博碩士論文 107322047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.144.97.60
姓名 邱義宏(Yi-Hong Qiu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 五層樓淺基礎建築物受震液化反應-離心模型
(nono)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-10-28以後開放)
摘要(中) 台灣位於環太平洋火山地震帶,土壤液化經常伴隨地震而發生。於921大地震時,受到液化引致基礎沉陷與承載力破壞是淺基礎損壞的主要原因。本研究設計五層樓高(16m)之建築物模型,搭配四種不同形式基礎,包括大獨立基腳基礎、小獨立基腳基礎、筏式基礎與地下室基礎,利用中央大學地工離心機與震動台於65g重力場環境進行離心模型試驗,砂土試體中不同深度埋置加速度計、孔隙水壓計、線性差動變壓器(LVDT)、雷射位移計及土壓力計,分別量測地層各物理性質之動態歷時反應,探討淺基礎建築物於液化地盤上受震反應。

研究結果顯示,當土壤未達液化時,地盤加速度有放大趨勢,隨著建築物越高加速度放大效應越明顯;但當土壤達液化狀態時,液化土層能有效阻隔震波向上傳遞,對於建築物有明顯地減震效應;施加震動強度越大,液化土層深度越深,超額孔隙水壓消散所需時間也越長久;在自由土層中,大部分沉陷主要由震動期間而發生;建築物沉陷由震動過程土壤受剪力作用而引致變形與超額孔隙水壓消散後土壤再壓密;基礎版之總應力歷時發現於受震初期,基礎版一端受壓時另一端受拉,底版總應力隨著建築物沉陷而持續累加。
摘要(英) A series of centrifuge tests were performance to investigate the settlement and seismic behavior of building on liquefiable ground with different types of foundation. The test were carried out by using NCU centrifuge and shaking table under 65g centrifuge acceleration field with liminar container. During the test, accelerometers, pore pressure transducers, linear variable differential transformers (LVDT) and laser displacement sensor were embedded in the soil layer to monitor the seismic response of soil deposit. The centrifuge experiments were conducted to evaluate the liquefaction-induced and post-liquefaction settlement of shallow foundations.

According to the test results, the following conclusions are made : When the soil does not liquefy, the acceleration is amplified significantly from the base of soil stratum to the top of structure. In liquefiable ground, liquefied layer will isolate the vibration that propagate to the buildings. The liquefied depth of sand layer increases with the increasing of input. In the free-field ground, most of the settlement occurred due to volumetric-induced deformations; In contrast, foundation settlement occurred due to shear-induced deformations and excess pore water pressure dissipate.
關鍵字(中) ★ 淺基礎
★ 土壤液化
★ 離心模型
★ 沉陷量
關鍵字(英)
論文目次 摘要 vi
Abstract vii
致謝 viii
目錄 ix
表目錄 xii
圖目錄 xiv
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 土壤液化 3
2-1-1 土壤液化定義 3
2-1-2 土壤液化造成之災害 4
2-2 離心模型原理 6
2-2-1 離心模型之基本相似律 6
2-2-2 動態離心模型之基本相似律 7
2-2-3 模型模擬 9
2-3 液化地盤建築物受震相關研究 10
2-3-1 土層相對密度與滲透性對液化地盤沉陷之影響 10
2-3-2 循環加載與震動台試驗 11
第三章 試驗方法與試驗設備 25
3-1 試驗方法 25
3-2 試驗土樣及基本物理性質 25
3-3儀器設備與相關設備 26
3-3-1 地工離心機 26
3-3-2中大離心震動台與資料擷取系統 26
3-3-3 積層版試驗箱與橡皮袋 27
3-3-4 建築物模型 28
3-3-5 各式感測器 28
3-3-6 移動式霣降儀 29
3-4試驗準備 29
3-4-1 試驗箱之準備與組立 29
3-4-2 重模試體製作 30
3-4-3 土壤試體飽和 31
3-4-4 石膏基礎版製作 32
3-4-5 離心模型試驗前準備與震動試驗 32
第四章 試驗結果與分析 52
4-1 試驗規劃 52
4-2 試驗內容 53
4-3 外加載重引致土體中應力增量 55
4-4 升g過程變化 57
4-5 加速度歷時 57
4-5-1 獨立基腳之加速度歷時 58
4-5-2 筏式基礎與地下式基礎之加速度歷時 60
4-5-3 建築物與土層的頻率特性 62
4-5-4 加速度歷時小結 63
4-6 超額孔隙水壓歷時 63
4-6-1 輸入不同震動強度之超額孔隙水壓歷時 63
4-6-2 土層之超額孔隙水壓比歷時 64
4-6-3 超額孔隙水壓歷時小結 67
4-7 建築物與自由土層沉陷量之比較 68
4-7-1 各試驗之沉陷歷時 68
4-7-2 各試驗沉陷量整理 71
4-7-3 建築物受震後之旋轉行為 72
4-8 建築物抗傾倒之安全係數檢核 72
4-9 基礎版與底版之總應力歷時 74
4-9-1 總應力歷時 74
4-9-2 總應力歷時小結 76
第五章 結論 201
參考文獻 203
參考文獻 1.中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
2.中華民國內政部營建署,建築技術規則,中華民國內政部營建署 (2008)。
3.王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2010)。
4.邱吉爾,「以動態離心模型試驗模擬液化地盤淺基礎建築物之受震反應」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2012)。
5.邱笙輔,「以動態離心模型試驗模擬淺基礎於層狀液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2018)。
6. 郭玉潔,「探討積層版試驗箱進行離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,桃園,台灣 (2009)。
7. 黃富國、余明山、何政弘,「九二一集集大地震土壤液化震駭與問題探討」,土木工程技術期刊,第三卷,第3期,第49~79頁,台灣 (1999)。
8.鄭文隆,吳偉康,「土壤液化之災害型態與現地研判」,地工技術,第9期,第90-103頁 (1985)。
9.蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
10.鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,桃園,台灣(2010)。
11.Adachi, T., Iwai, S., Yasui, M., and Sato, Y., “Settlement and inclination of reinforced concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake.” Proc., 10th World Conf. on Earthquake Engineering, International Association for Earthquake Engineering (IAEE), Madrid, Spain, 147–152 (1992).
12.Adalier, K., Elgamal, A.W., and Martin, G.R., “Foundation liquefaction countermeasures for earth embankment,” Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 6, pp. 500-517 (1998).
13.Bartlett, S.F., and Youd, T.L.,“Empirical prediction of liquefaction-induced lateral spread,”Geotechnical Engineering, Vol.121, No.4, pp. 316-329 (1995).
14.Committee on Soil Dynamics of the Geotechnical Engineering Division. “Definition of terms related to liquefaction,”ASCE, Vol.104, No.9, pp. 1197-1200 (1978).
15.Deng, L., and Kutter, B.L., “Characterization of rocking shallow foundations using centrifuge model tests,”Earthquake Engineering and Structure Dynamic, Vol.41, pp. 1043-1060 (2011).
16.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Centrifuge experimentation of building performance on liquefied ground,”Geotechnical Earthquake Engineering and Soil Dynamic IV (2008).
17.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms ,”Geotechnical Engineering, Vol.136, No.7, pp. 918-929 (2010).
18.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Mechanisms of seismically induced settlement of buildings with shallow foundation on liquefiable soil ,”Geotechnical Engineering, Vol.136, No.1, pp. 151-164 (2010).
19.Elizabeth, A., and Sitar, N.,“Performance of improve ground,”The Pacific Earthquake Engineering Research Center, Annual Meeting Research Digest (2002)
20.Gajan, S., and Kutter, B.L., “Contact interface model for shallow foundations subjected to combined cyclic loading,”Geotechnical Engineering, Vol.135, No.3, pp. 407-419 (2009).
21.Gajan, S., Kutter, B.L., Phaln, J.D., Hutchinson, T.C., and Martin, G.R.“Centrifuge modeling of load-deformation behavior of rocking shallow foundation,”Soil Dynamic and Earthquake, Vol.25, pp. 773-783 (2005).
22.Ishihara, K.,“Stability of natural deposits during earthquake,”Processings. of 11th International Conference on Soil Mechanics and Foundation Engineering., San Francisco, Vol.1, pp. 321-376 (1985).
23.Knappett, J.A., Haigh, S.K., and Madabhushi S.P.G.,“Mechanisms of failure for shallow foundation under earthquake loading,”Soil Dynamic and Earthquake, Vol.26, pp. 91-102 (2006).
24.Liu, L., and Dobry, R., “Seicmic response of shallow foundation on liquefible sand,”Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 557-567(1997).
25.Madabhushi, S.P.G., Teymur, B., Haigh, S.K., and Brennan, A.J.,“Modelling of liquefaction and lateral spreading,”International Workshop on Earthquake Simulation in Geotechnical Engineering, Cleveland (2001).
26.Marques A.S.P.S., and Coelho P.A.L.F.,“Centrifuge modeling of seismic liquefaction effects on adjacent shallow foundations,”Physical Modelling in Geotechnics, London (2014).
27.Seed, H.B.,“Soil liquefaction and cyclic mobility evaluation for level ground during earthquake,”Geotechnical Engineering, Vol.105, No.GT2, pp. 201-255 (1979).
28.Seed, H.B., and Idriss, I.M.,“Ground motions and soil liquefaction during earthquakes,”Earthquake Engineering Research Institute Monograph, Oakland (1982).
29.Seed, H.b., Idriss, I.M., Makdisi, F., and Banerji, N.,“Representation of irregular stress time history by equivalent uniform stress series in liquefaction analysis,”Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, California (1975).
30.Sharp, M.K., Dobry, R., and Abdoun T.H., “Liquefaction Centrifuge Modeling of Sands of Different Permability,”Geotechnical Engineering, Vol.129, No.12, pp. 1083-1091 (2003).
31.Sharp, M.K., and Pak, A “Estimating liquefaction-induced settlement of shallow foundations by numerical approach,”Computers and Geotechnics, Vol.37, pp267-279 (2010).
32.Thorel, L., Rault, G., Garnier, J., Escoffier, S., and Boura, C., “Soil-footing interaction: Building subjected to lateral cyclic loading,”6th International Conference on Physical Modelling in Geotechnics (2006).
33.Yoshimi, Y.,“Settlement of buildings on saturated sand during earthquakes,”Soils and Foundations, Vol. 17, pp. 23-28 (1997).
指導教授 黃俊鴻 審核日期 2020-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明