博碩士論文 106324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.119.116.77
姓名 游芷欣(Chih-Hsin Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶液剪切力 法製備醌型噻吩並異靛藍 (DTPQ) N型小分子 半 導體於有機場效應電晶 體 應用
(Solution-Sheared Thienoisoindigo based Quinoidal (DTPQ) N-Type Small Molecular Semiconductors for Organic Field Effect Transistor Application)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件
★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用
★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料
★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池★ 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文以醌型為結構之 n型小分子 作 為有機半導體材料,利用溶液製程
中的剪切力塗 布 法製作出高結晶性與單一方向性之有機場效應電晶體。 一
系列以噻吩並異靛藍 (thieno-isoindigo) 為核心 的醌型 (quinoidal) n型小分
子 DTPQ 發展 出 具有 直鏈 (DTPQ-10)和不同支點位置 DTPQ-b8,,-b16,,-b17)的四種材料,並對有機場效應電晶體中薄膜微結構、分子堆疊
排列和電荷傳輸之間的關係進行了系統的研究。
改變側鏈長度與支點位置對於分子堆疊、結晶性和元件性能產生的影
響,利用紫外光 -可見光光譜儀、光學顯微鏡、原子力顯微鏡和低掠角 廣角
X光繞射分析。 DTPQ-b16支點 距離主鏈兩個碳 與較長 支 鏈長 度 ,由於 高 結
晶性、 晶 粒大 且分子排列具有單一方向性有利於電荷傳輸 因此得到最高電
子遷移率為 2.54 cm2 V-1 s-1、 電流開關 也 比超過 105。相反的, DTPQ-b8支
點距離主鏈兩個碳 與較短 支 鏈長 度 ,顯示較差溶解度不利於層層堆疊,得到
電子遷移率為 0.72 cm2 V-1 s-1。 DTPQ-b17支點距離主鏈三個碳 ,於薄膜形
貌上出現明顯裂痕,不利於電荷傳輸,得到電子遷移率為 0.192 cm2 V-1 s-1。
直鏈的 DTPQ-10,也有較差溶解度,且分子呈現面朝上 (face-on)的排列與較
差的薄膜形貌,得到最低電子遷移率為 0.013 cm2 V-1 s-1。 同時DTPQ系列存放於控制濕度30~40%的大氣環境下超過一個月,並維持良好的空氣穩定度。
摘要(英) A specific design for solution-sheared organic semiconductors would be an effective approach to achieve high performance of organic field effect transistor (OFET) with high crystallinity and uniaxial alignment. Based on a series of thieno-isoindigo based quinoidal n-type small molecules DTPQ with alkyl-chain lengths (DTPQ-10) and different branching positions (DTPQ-b8, -b16, -b17) were developed.
The effect of the length and branching position of alkyl chains on charge transport, molecular packing and crystallinity are investigated by UV-vis spectroscopy, atomic force microscopy (AFM), grazing incidence wide angle X-ray diffraction (GIWAXD). DTPQ-b16 with branching point at two position away the backbone with longer branch length, results in high crystallinity, larger grain size and well orientation exhibit the maximum electron mobility (μe) up to 2.54 cm2 V-1 s-1, ON/OFF ratio (ION /IOFF) over than 105. In contrast, DTPQ-b8 with branching point at two position away the backbone with shorter branch length, results in poor solubility, which is disadvantage to build the lamella stacking structure, and lead to an electron mobility of 0.72 cm2 V-1 s-1. DTPQ-b17 with branching point at third position away the backbone showed obvious crack on film morphology, which are highly disadvantage to charge transport, and an electron mobilities reaching 0.192 cm2 V-1 s-1. Last, DTPQ-10 with linear alkyl chain results in poor solubility with face-on molecular packing and bad morphology exhibit the lowest electron mobility of 0.013 cm2 V-1 s-1. Especially, these four DTPQs OFETs show excellent air stability, where the devices were stored in ambient condition (room temperature; relative humidity 30~40%) for over one month.
關鍵字(中) ★ 有機場效應電晶體 關鍵字(英) ★ OFET
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
一. 緒論 1
1-1 前言 1
1-2 有機場效應電晶體 3
1-3 有機小分子材料 15
1-4 分子排列 37
1-5 有機半導體溶液製程 41
1-6 研究動機 51
二. 實驗方法 53
2-1 實驗藥品 53
2-2 實驗設備與裝置 56
2-3 實驗方法 57
2-4 元件半導體層薄膜量測分析 62
三. 結果與討論 65
3-1 有機小分子材料性質分析 65
3-2 有機場效應電晶體電性分析 72
3-3 薄膜形貌 79
3-4 有機小分子半導體薄膜微結構分析 82
四. 結論與未來展望 90
參考文獻 92
附錄 98
參考文獻 1. Quinn JTE, Zhu J, Li X, Wang J, Li Y. Recent Progress in the Development of n-type Organic Semiconductors for Organic Field Effect Transistors. J Mater Chem C 2017, 5: 8654-8681.
2. Guo X, Facchetti A, Marks TJ. Imide- and Amide-Functionalized Polymer Semiconductors. Chem Rev 2014, 114: 8943-9021.
3. Zaumseil. J, Sirringhaus. H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem Rev 2007, 107: 1296-1323.
4. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H. Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits. Proceedings of the IEEE 2003, 91: 305-327.
5. Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, et al. Recent Progress in High-Mobility Organic Transistors: A Reality Check. Adv Mater 2018: 1801079.
6. Kelley TW, Muyres DV, Baude PF, Smith TP, Jones TD. High Performance Organic Thin Film Transistors. Mater Res Soc Symp Proc 2011, 771: 2-15.
7. Tripathi AK, Heinrich M, Siegrist T, Pflaum J. Growth and Electronic Transport in 9,10-Diphenylanthracene Single Crystals—An Organic Semiconductor of High Electron and Hole Mobility. Adv Mater 2007, 19: 2097-2101.
8. Moon H, Zeis R, Borkent EJ, Besnard C, Lovinger AJ, Siegrist T, et al. Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives. J Am Chem Soc 2004, 126: 15322-15323.
9. Xiao K, Liu Y, Qi T, Zhang W, Wang F, Gao J, et al. A Highly π-Stacked Organic Semiconductor for Field-Effect Transistors Based on Linearly Condensed Pentathienoacene. J Am Chem Soc 2005, 127: 13281-13286.
10. Subramanian S, Park SK, Parkin SR, Podzorov V, Jackson TN, Anthony JE. Chromophore Fluorination Enhances Crystallization and Stability of Soluble Anthradithiophene Semiconductors. J Am Chem Soc 2008, 130: 2706-2707.
93
11. Tang Q, Zhang D, Wang S, Ke N, Xu J, Yu JC, et al. A Meaningful Analogue of Pentacene: Charge Transport, Polymorphs, and Electronic Structures of Dihydrodiazapentacene. Chem Mater 2009, 21: 1400-1405.
12. Hong W, Wei Z, Xi H, Xu W, Hu W, Wang Q, et al. 6H-Pyrrolo[3,2-b:4,5-b′′]Bis[1,4]Benzothiazines: Facilely Synthesized Semiconductors for Organic Field-Effect Transistors. J Mater Chem 2008, 18: 4814-4820.
13. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM. C60 Thin Film Transistors. Appl Phys Lett 1995, 67: 121-123.
14. Anthopoulos TD, Singh B, Marjanovic N, Sariciftci NS, Montaigne Ramil A, Sitter H, et al. High Performance n-Channel Organic Field-Effect Transistors and Ring Oscillators Based on C60 Fullerene Films. Appl Phys Lett 2006, 89: 213504.
15. Long DX, Karakawa M, Noh YY. An Improvement of Performance in n-Channel Organic Field Effect Transistors with N-Phenyl[60]Fulleropyrrolidines by Molecular Doping. Phys Chem Chem Phys 2016, 18: 23904-23909.
16. Y.Sakamoto, T.Suzuki, M.Kobayash, Y.Gao, Y.Fukai, Y.Inoue, et al. Perfluoropentacene: High-Performance p-n Junctions and Complementary Circuits with Pentacene. J Am Chem Soc 2004, 126: 8138-8140.
17. Letizia JA, Facchetti A, Stern CL, Ratner MA, Marks TJ. High Electron Mobility in Solution-Cast and Vapor-Deposited Phenacyl-Quaterthiophene-Based Field-Effect Transistors: Toward n-type Polythiophenes. J Am Chem Soc 2005, 127: 13476-13477.
18. D.Shukla, Nelson SF, Freeman DC, M.Rajeswaran, Ahearn WG, Meyer DM, et al. Thin-Film Morphology Control in Naphthalene-Diimide-Based Semiconductors: High Mobility n-Type Semiconductor for Organic Thin-Film Transistors. Chem Mater 2008, 20: 7486-7491.
19. Schmidt R, Oh JH, Sun YS, Deppisch M, Krause AM, Radacki K, et al. High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors. J Am Chem Soc 2009, 131: 6215-6228.
20. Brown AR, Leeuw DMd, Lous EJ, Havinga EE. Organic n-type Field-Effect Transistor.
94
Synth Met 1994, 66: 257-261.
21. Li J, Chang J-J, Tan HS, Jiang H, Chen X, Chen Z, et al. Disc-like 7, 14-Dicyano-Ovalene-3,4:10,11-Bis(Dicarboximide) as a Solution-Processible n-type Semiconductor for Air Stable Field-Effect Transistors. Chem Sci 2012, 3: 846-850.
22. Zhou K, Dong H, Zhang HL, Hu W. High Performance n-type and Ambipolar Small Organic Semiconductors for Organic Thin Film Transistors. Phys Chem Chem Phys 2014, 16: 22448-22457.
23. Leeuw DMd, Simenon MMJ, Brown AR, Einerhand REF. Stability of n-type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices. Synth Met 1997, 87: 53-59.
24. Zhang F, Hu Y, Schuettfort T, Di CA, Gao X, McNeill CR, et al. Critical Role of Alkyl Chain Branching of Organic Semiconductors in Enabling Solution-Processed N‑Channel Organic Thin-Film Transistors with Mobility of up to 3.50 cm2 V−1 s−1. J Am Chem Soc 2013, 135: 2338-2349.
25. Wu H, Wang Y, Qiao X, Wang D, Yang X, Li H. Pyrrolo[3,2-b]pyrrole-Based Quinoidal Compounds For High Performance n-Channel Organic Field-Effect Transistor. Chem Mater 2018, 30: 6992-6997.
26. Zhang C, Zang Y, Gann E, McNeill CR, Zhu X, Di CA, et al. Two-Dimensional π‑Expanded Quinoidal Terthiophenes Terminated with Dicyanomethylenes as n‑Type Semiconductors for High-Performance Organic Thin-Film Transistors. J Am Chem Soc 2014, 136: 16176-16184.
27. Xiong Y, Tao J, Wang R, Qiao X, Yang X, Wang D, et al. A Furan-Thiophene-Based Quinoidal Compound: A New Class of Solution-Processable High-Performance n-Type Organic Semiconductor. Adv Mater 2016, 28: 5949-5953.
28. Qiao Y, Guo Y, Yu C, Zhang F, Xu W, Liu Y, et al. Diketopyrrolopyrrole-Containing Quinoidal Small Molecules for High-Performance, Air-Stable, and Solution-Processable n-Channel Organic Field-Effect Transistors. J Am Chem Soc 2012, 134: 4084-4087.
29. Zhang C, Yuan D, Wu H, Gann E, Thomsen L, McNeill CR, et al. Insight into Thin-Film
95
Stacking Modes of π-Expanded Quinoidal Molecules on Charge Transport Property via Side-Chain Engineering. J Mater Chem C 2017, 5: 1935-1943.
30. Li J, Qiao X, Xiong Y, Li H, Zhu D. Five-Ring Fused Tetracyanothienoquinoids as High-Performance and Solution-Processable n-Channel Organic Semiconductors: Effect of the Branching Position of Alkyl Chains. Chem Mater 2014, 26: 5782-5788.
31. Wang C, Qin Y, Sun Y, Guan YS, Xu W, Zhu D. Thiophene-Diketopyrrolopyrrole-Based Quinoidal Small Molecules as Solution-Processable and Air-Stable Organic Semiconductors: Tuning of the Length and Branching Position of the Alkyl Side Chain toward a High-Performance n-Channel Organic Field-Effect Transistor. ACS Appl Mater Interfaces 2015, 7: 15978-15987.
32. Wang C, Zang Y, Qin Y, Zhang Q, Sun Y, Di CA, et al. Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Based Quinoidal Small Molecules: Synthesis, Characterization, Redox Behavior, and n-channel Organic Field-Effect Transistors. Chem - Eur J 2014, 20: 13755-13761.
33. S.Handa, E.Miyazaki, K.Takimiya, Y.Kunugi. Solution-Processible n-Channel Organic Field-Effect Transistors Based on Dicyanomethylene-Substituted Terthienoquinoid Derivative. J Am Chem Soc 2007, 129: 11684-11685.
34. Chesterfield RJ, Newman CR, Pappenfus TM, Ewbank PC, Haukaas MH, Mann KR, et al. High Electron Mobility and Ambipolar Transport in Organic Thin-Film Transistors Based on aπ-Stacking Quinoidal Terthiophene. Adv Mater 2003, 15: 1278-1282.
35. Zhang C, Zang Y, Zhang F, Diao Y, McNeill CR, Di CA, et al. Pursuing High-Mobility n-Type Organic Semiconductors by Combination of "Molecule-Framework" and "Side-Chain" Engineering. Adv Mater 2016, 28: 8456-8462.
36. Wu Q, Li R, Hong W, Li H, Gao X, Zhu D. Dicyanomethylene-Substituted Fused Tetrathienoquinoid for High-Performance, Ambient-Stable, Solution-Processable n-Channel Organic Thin-Film Transistors. Chem Mater 2011, 23: 3138-3140.
37. Wu Q, Qiao X, Huang Q, Li J, Xiong Y, Gao X, et al. High-Performance n-Channel Field Effect Transistors Based on Solution-Processed Dicyanomethylene-Substituted Tetrathienoquinoid. RSC Adv 2014, 4: 16939-16943.
96
38. Wu Q, Ren S, Wang M, Qiao X, Li H, Gao X, et al. Alkyl Chain Orientations in Dicyanomethylene-Substituted 2,5-Di(Thiophen-2-yl)Thieno-[3,2-b]Thienoquinoid: Impact on Solid-State and Thin-Film Transistor Performance. Adv Funct Mater 2013, 23: 2277-2284.
39. Chueh CC, Li CZ, Ding F, Li Z, Cernetic N, Li X, et al. Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants. ACS Appl Mater Interfaces 2017, 9: 1136-1144.
40. Ren L, Yuan D, Gann E, Guo Y, Thomsen L, McNeill CR, et al. Critical Role of Molecular Symmetry for Charge Transport Properties: A Paradigm Learned from Quinoidal Bithieno[3,4-b]Thiophenes. Chem Mater 2017, 29: 4999-5008.
41. Lin G, Qin Y, Zhang J, Guan Y-S, Xu H, Xu W, et al. Ambipolar Organic Field-Effect Transistors Based on Diketopyrrolopyrrole Derivatives Containing Different π-Conjugating Spacers. J Mater Chem C 2016, 4: 4470-4477.
42. Li J, Qiao X, Xiong Y, Hong W, Gao X, Li H. A Solution-Processable Dicyano-substituted Quinoidal Oligothiophene for Air-Stable Ambipolar Organic Field-Effect Transistors. J Mater Chem C 2013, 1: 5128-5132.
43. Nakano M, Osaka I, Takimiya K. Dibenzo[a,e]pentalene-Embedded Dicyanomethylene-Substituted Thienoquinoidals for n-Channel Organic Semiconductors: Synthesis, Properties, and Device Characteristics. J Mater Chem C 2015, 3: 283-290.
44. Zhong H, Smith J, Rossbauer S, White AJ, Anthopoulos TD, Heeney M. Air-Stable and High-Mobility n-Channel Organic Transistors Based on Small-Molecule/Polymer Semiconducting Blends. Adv Mater 2012, 24: 3205-3211.
45. Yoon WS, Park SK, Cho I, Oh J-A, Kim JH, Park SY. High-Mobility n-Type Organic Transistors Based on a Crystallized Diketopyrrolopyrrole Derivative. Adv Funct Mater 2013, 23: 3519-3524.
46. Lu J, Dadvand A, Chu T-y, Movileanu R, Baribeau J-M, Ding J, et al. Inkjet-Printed Unipolar n-type Transistors on Polymer Substrates Based on Dicyanomethylene-Substituted Diketopyrrolopyrrole Quinoidal Compounds. Org Electron 2018, 63: 267-275.
97
47. Lee KC, Ryu G-S, Chen S, Kim G, Noh Y-Y, Yang C. Dicyanomethylene-Quinoid vs. Dicyanovinyl-Benzenoid Organic Semiconductors: Understanding Structure-Property Correlations in Mesomerism-like Forms. Org Electron 2016, 37: 402-410.
48. Ribierre JC, Zhao L, Furukawa S, Kikitsu T, Inoue D, Muranaka A, et al. Ambipolar Organic Field-Effect Transistors Based on Solution-Processed Single Crystal Microwires of a Quinoidal Oligothiophene Derivative. Chem Commun 2015, 51: 5836-5839.
49. Osaka I, Takimiya K. Backbone Orientation in Semiconducting Polymers. Polymer 2015, 59: A1-A15.
50. Yao Z-F, Wang J-Y, Pei J. Control of π–π Stacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals. Cryst Growth Des 2017, 18: 7-15.
51. Li H, Tee BC, Cha JJ, Cui Y, Chung JW, Lee SY, et al. High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals. J Am Chem Soc 2012, 134: 2760-2765.
52. Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SC, Chen J, et al. Ultra-High Mobility Transparent Organic Thin Film Transistors Grown by an Off-Centre Spin-Coating Method. Nat Commun 2014, 5: 3005.
53. A.Tracz, Jeszka JK, Watson MD, W.Pisula, K.Mu¨llen, T.Pakula. Uniaxial Alignment of the Columnar Super-Structure of a Hexa (Alkyl) Hexa-peri-hexabenzocoronene on Untreated Glass by Simple Solution Processing. J Am Chem Soc 2003, 125: 1682-1683.
54. Pisula W, Menon A, Stepputat M, Lieberwirth I, Kolb U, Tracz A, et al. A Zone-Casting Technique for Device Fabrication of Field-Effect Transistors Based on Discotic Hexa-peri-hexabenzocoronene. Adv Mater 2005, 17: 684-689.
55. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, et al. Tuning Charge Transport in Solution-Sheared Organic Semiconductors using Lattice Strain. Nature 2011, 480: 504-508.
56. Diao Y, Tee BC, Giri G, Xu J, Kim DH, Becerril HA, et al. Solution Coating of Large-Area Organic Semiconductor Thin Films with Aligned Single-Crystalline Domains. Nat Mat 2013, 12: 665-671.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2020-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明