博碩士論文 107223051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:54.196.114.118
姓名 江則霖(Ze-Lin-Chiang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 探討以金屬粉末作為還原劑所製備的錫鈣鈦礦膜應用於反式錫鈣鈦礦太陽能電池
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 錫鈣鈦礦(簡稱:TPSK)太陽能電池是將原鉛鈣鈦礦太陽能電池的主動層中心鉛金屬以錫取代,因著TPSK有較鉛鈣鈦礦更接近Shockley–Queisser limit (S–Q limit)中最佳光電轉換效率所需具備的吸光層能隙(1.34 eV),因此深受科學家重視;至今TPSK太陽能電池之光電轉換效率已達13%,然而TPSK膜中若有Sn4+ 存在會使TPSK因晶格缺陷而有電荷再結合、吸光能力不佳等問題,使所組裝之元件有不好的光伏表現。因此本研究將不同的金屬(Mg/Fe/Co/Ni/Zn/Sn)粉末做為還原劑添加入TPSK前驅溶液中,來還原前驅溶液中的Sn4+成Sn2+ (Sn4+ + 2 e− ⇌ Sn2+ E0: +0.15 V)。實驗結果顯示,以用鎳金屬(Ni ⇌ Ni2+ + 2 e− E0: +0.25 V)來還原前驅溶液能製備出高結晶度、平整且吸光能力佳的TPSK膜,以此高品質TPSK膜作為吸收層之反式TPSK太陽能電池元件有最高的光電流密度(22.24 mA/cm2 ),及光電轉換效率(8.56%)。其中,添加鐵、鈷、鎳、鋅、錫等金屬皆能使TPSK前驅溶液中的Sn4+還原成Sn2+,同時又能避免Sn4+過度還原成Sn0 (2Sn2+ ⇌ Sn0 + Sn4+ E0: -0.28 V)。以上述五種金屬還原的TPSK前驅溶液所製備的膜比由未添加金屬還原劑之溶液所製的膜有較高的吸光度,由光致螢光(PL)及時間解析螢光(TRPL)光譜圖可看見經還原後之前驅溶液所製備的TPSK膜激子較不易淬熄,所製得之錫鈣鈦礦膜缺陷較少,因此所組裝之錫鈣鈦礦太陽能電池有較高的光電轉換效率;然而鎂金屬因其過強(Mg ⇌ Mg2+ + 2 e− E0: +2.93 V)的還原力會將Sn2+直接還原成Sn0,因此以添加鎂的TPSK前驅溶液所製備的膜為吸光層之元件的效率(0.5%)很低。
摘要(英) Tin perovskite (TPSK) solar cell (T-PSC) is a cell used tin to replace the high toxic lead in the active layer of perovskite sola cell (PSC). TPSK with a band gap close to the ideal energy gap (~1.34 eV) in Shockley–Queisser limit (S–Q limit) causes a great attention in solar cell community. To date, the photoelectric conversion efficiency of TPSK has reached 13 %. However, the presence of Sn4+ in the TPSK film will causethe lattice defects, charge recombination, and poor light absorption, resulting in poor photovoltaic performance when applied in T-PSC.In this study, various metal (Mg/Fe/Co/Ni/Zn/Sn) powders were added to the TPSK precursor solution to reduce Sn4+ to Sn2+ (Sn4+ + 2 e− ⇌ Sn2+ E0: +0.15 V). The results show that nickel (Ni ⇌ Ni2+ + 2 e− E0: +0.25 V) is the most suitable to reduce Sn4+ in recursor solution to prepare high crystallinity, flatness, and good absorption Ni-TPSK film. The T-PSCbased on high-quality Ni-TPSK film has the highest photocurrent density (22.24 mA/cm2) and photoelectric conversion efficiency (8.56 %) vs 5.12% for that based un-reduced TPSK film. Photoluminescence (PL) and Time-Resolved Photoluminescence (TRPL) spectrum revealed that the excitons of the reduced TPSK film are less likely to be quenched suggested that reduced TPSK film has fewer defects. Therefore, the assembled tin perovskite solar cell has a higher photoelectric conversion efficiency. However, magnesium will over reduce Sn4+ to Sn0 due to its high reduction potential (Mg ⇌ Mg2+ + 2 e− E0: +2.93 V). Thus, the efficiency of T-PSC based on Mg reduced tin perovskite (Mg-TPSK) absorber has very low efficiency (0.5%).
關鍵字(中) ★ 錫鈣鈦礦 關鍵字(英) ★ Tin-Perovskite
論文目次 目錄
摘要 .............................................................................................. v
Abstract ..................................................................................... vi
謝誌 ........................................................................................... vii
目錄 .......................................................................................... viii
圖目錄 .......................................................................................... x
表目錄 ...................................................................................... xiii
第一章 .......................................................................................... 1
1-1 前言 ..................................................................................................... 1
1-2-1.鈣鈦礦太陽能電池的架構 ....................................................... 4
1-2-2.反式鈣鈦礦太陽能電池的工作原理 ....................................... 5
1-2-3.鈣鈦礦太陽能電池的光電轉換效率 ....................................... 7
1-3-1.第一個將鈣鈦礦材料應用於太陽能電池的研究 ................... 9
1-3-2.第一個使用固態電解質的鈣鈦礦太陽能電池元件 ............. 12
1-3-3.第一個反式結構鈣鈦礦太陽能電池的研究 ......................... 12
1-4 錫鈣鈦礦太陽能電池的研究歷程 ................................................... 13
1-4-1.第一個錫鈣鈦礦太陽能電池的研究 ..................................... 14
1-4-4.以 SnF2與 Pyrazine 為添加劑所製之 FASnI3膜當吸光層的
錫鈣鈦礦太陽能電池 ............................................................. 18
1-4-5.以 FAxMA(1-x)SnI3為吸光層的錫鈣鈦礦太陽能電池研究 ... 19
1-4-7.當今文獻發表光電轉換效率最高之錫鈣鈦礦太陽能電池 . 20
1-5-1.以一步驟處理法製備錫鈣鈦礦膜 ......................................... 22
1-5-2.一步驟反溶劑處理法製備錫鈣鈦礦膜 ................................. 23
1-5-4.兩步驟合成法製備錫鈣鈦礦膜 ............................................. 25
1-6 減少錫鈣鈦礦前驅溶液及膜中 Sn4+的方法 ................................... 26
1-6-1.在聯胺環境下製備 MASnI3膜可將 MASnI3膜內的 Sn4+還原
成 Sn2+ ..................................................................................... 26
1-6-2.以 N2H5Cl 還原 FASnI3前驅溶液中的 Sn4+ .......................... 27
1-7 研究動機 ................................................................................. 34
ix
第二章 實驗方法 ..................................................................... 36
2-1 實驗藥品與儀器 ............................................................................... 36
2-1-1.藥品 ......................................................................................... 36
2-1-2 儀器設備 ................................................................................. 37
2-2 反式鈣鈦礦太陽能電池組裝步驟 ................................................... 38
2-2-1 藥品配製 ................................................................................. 38
2-2-2 反式錫鈣鈦礦太陽能電池元件的組裝 ................................. 40
2-3 儀器原理及樣品製備 ............................................................. 44
2-3-1 太陽光模擬器及光電轉換效率量測(Solar Simulator,
Enlitech SS-F5) ........................................................................ 44
2-3-2 太陽能電池外部量子效率量測系統(Incident Photon to
Current Conversion Efficiency (IPCE), QE-S3011) ............... 44
2-3-3 X-ray 繞射光譜儀(X-Ray Diffractometer, BRUKER D8
Discover ) ................................................................................. 46
2-3-4 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visibleNIR spectroscopy,HITACHI U-4100 ) .............................. 46
2-3-5 光致螢光光譜儀及時間解析螢光光譜儀(Photoluminescence
Spectrometer, Uni think UniRAM) ......................................... 47
2-3-6 超高解析場發射掃描式電子顯微鏡(Ultra-High Resolution
FE-SEM, NOVA NanoSEM-230) ............................................ 48
2-3-7.XPS 光電子能譜儀(X-ray photoelectron spectroscopy Thermo
VG-Scientific / Sigma Probe) .................................................. 49
第三章 結果與討論 ................................................................. 51
3-1 篩選適用於還原錫鈣鈦礦前驅溶液之金屬 .................................. 51
3-1-1 添加錫粉於不同濃度之錫鈣鈦礦前驅溶液時對所組裝元件
光伏表現的影響 ..................................................................... 51
3-1-2 不同 SnI2:有機鹵化物之比例的錫鈣鈦礦前驅液所組裝之元
件的光伏表現 ......................................................................... 52
3-1-3 將 10 mol% (vs SnI2)六種不同金屬粉末作為錫鈣鈦礦前驅
液的還原劑所製備之錫鈣鈦礦膜的光伏表現 ..................... 53
3-1-4 鎳粉使用量及還原時間優化 ................................................ 55
3-2 經不同金屬粉末還原的錫鈣鈦礦前驅溶液所製備之錫鈣鈦礦膜
的化學性質、光學性質與表面形貌 ..................................................... 62
3-2-3 經不同金屬粉末還原的錫鈣鈦礦前驅溶液所製備之錫鈣鈦
x
礦膜前置軌域能階 ................................................................. 75
3-2-5 經不同金屬粉末還原的錫鈣鈦礦前驅溶液所製備之錫鈣鈦
礦膜的 X-Ray 繞射(XRD)圖 ................................................. 81
第四章 結論 ............................................................................. 87
參考文獻.................................................................................... 88
參考文獻 1. https://www.energytrend.com.tw/research/20181203-14312898.html. (accessed 11/23/2020).
2. http://en.wikipedia.org/wiki/Gustav_Rose. (accessed 11/23).
3. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
4. Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370 (6512), 108.
5. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.-G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials 2016, 28 (42), 9333-9340.
6. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy & Environmental Science 2018, 11 (9), 2353-2362.
7. Nishimura, K.; Kamarudin, M. A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S., Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 2020, 74, 104858.
8. Wu, W.-Q.; Yang, Z.; Rudd, P. N.; Shao, Y.; Dai, X.; Wei, H.; Zhao, J.; Fang, Y.; Wang, Q.; Liu, Y.; Deng, Y.; Xiao, X.; Feng, Y.; Huang, J., Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Science Advances 2019, 5 (3), eaav8925.
9. Chiang, C.-H.; Wu, C.-G., A Method for the Preparation of Highly Oriented MAPbI3 Crystallites for High-Efficiency Perovskite Solar Cells to Achieve an 86% Fill Factor. ACS Nano 2018, 12 (10), 10355-10364.
10. Li, Y.; Ding, B.; Chu, Q.-Q.; Yang, G.-J.; Wang, M.; Li, C.-X.; Li, C.-J., Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports 2017, 7 (1), 46141.
11. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. (accessed 11/23).
12. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2 (1), 591.
13. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25 (27), 3727-3732.
14. Gai, C.; Wang, J.; Wang, Y.; Li, J., The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance. Energies 2020, 13 (1).
15. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
16. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
17. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
18. Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C., Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Advanced Science 2017, 4 (11), 1700204.
19. Jokar, E.; Chien, C.-H.; Tsai, C.-M.; Fathi, A.; Diau, E. W.-G., Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Advanced Materials 2019, 31 (2), 1804835.
20. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7 (9), 3061-3068.
21. Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T.-B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G., Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas–Solid Reaction Film Fabrication Process. The Journal of Physical Chemistry Letters 2016, 7 (5), 776-782.
22. Shahbazi, S.; Li, M.-Y.; Fathi, A.; Diau, E. W.-G., Realizing a Cosolvent System for Stable Tin-Based Perovskite Solar Cells Using a Two-Step Deposition Approach. ACS Energy Letters 2020, 5 (8), 2508-2511.
23. Cai, S., Present Research Progress of Sn Halide Perovskite Solar Cells. IOP Conference Series: Earth and Environmental Science 2019, 242, 022038.
24. Song, T.-B.; Yokoyama, T.; Stoumpos, C. C.; Logsdon, J.; Cao, D. H.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G., Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society 2017, 139 (2), 836-842.
25. Kayesh, M. E.; Chowdhury, T. H.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J.-J.; Noda, T.; Islam, A., Enhanced Photovoltaic Performance of FASnI3-Based Perovskite Solar Cells with Hydrazinium Chloride Coadditive. ACS Energy Letters 2018, 3 (7), 1584-1589.
26. Gu, F.; Ye, S.; Zhao, Z.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C., Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification. Solar RRL 2018, 2 (10), 1800136.
27. Wu, T.; Cui, D.; Liu, X.; Meng, X.; Wang, Y.; Noda, T.; Segawa, H.; Yang, X.; Zhang, Y.; Han, L., Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Light-Absorbing Layer. Solar RRL 2020, 4 (9), 2000240.
28. Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 2018, 49, 411-418.
29. Lin, Z.; Liu, C.; Liu, G.; Yang, J.; Duan, X.; Tan, L.; Chen, Y., Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Chemical Communications 2020, 56 (28), 4007-4010.
30. Skoog, D. S.; West, D. M. Fundamentals of Analytical Chemistry, 3rd edit. P780~782
31. Zhu, Z.; Chueh, C.-C.; Li, N.; Mao, C.; Jen, A. K. Y., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials 2018, 30 (6), 1703800.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2021-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明