博碩士論文 107223066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.223.171.140
姓名 許茗郡(Ming-Chun Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備奈米鈀金屬於具羧酸官能基中孔洞矽材在有機催化反應之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 本論文主要分為兩大部分,在第一部分研究中,超小奈米鈀金屬還原在具羧酸官能基之二維結構SBA-15中孔洞矽材(S15C20)以及三維結構KIT-6中孔洞矽材(K6C20)之中。利用化學還原劑使金屬還原速率上升,並藉由S15C20以及K6C20表面原有的羥基及官能化的羧酸基,使離子鈀金屬能快速平均分散並負載在孔洞之中並還原奈米鈀金屬顆粒。由於S15C20以及K6C20具有高比表面積以及良好的孔洞體積,故使用S15C20以及K6C20作為載體可以提高奈米鈀金屬分散率和負載率從而提高催化活性。本實驗將製成的Pd(x)@S15C20以及Pd(x)@K6C20應用在催化氯苯加氫脫氯反應當中,分別探討二維結構以及三維結構以及不同溶劑對催化活性之影響。經過一系列的研究使用Pd(2)@K6C20作為催化劑去進行氯苯加氫脫氯反應,其轉換頻率 (TOF) 達50 h-1。在這項研究中,Pd(2)@K6C20展示了其應用於催化氯苯加氫脫氯是高活性的催化劑。
在第二部分研究中,接續使用與第一部分相同的催化劑。本實驗將Pd(x)@S15C20以及Pd(x)@K6C20應用在催化六價鉻還原反應當中。在催化六價鉻還原反應的研究中Pd(0.5)@S15C20表現出很高的催化活性,其TOF高達8.85 min-1。在這項研究中,Pd(0.5)@S15C20展現出其作為催化六價鉻還原反應的催化劑是非常具有前景的。
摘要(英) The use of palladium nanoparticles (Pd NPs) as catalysts for various c catalytic reactions is getting tremendous attention recently because of their high catalytic activity and stability. However, the Pd NPs aggregates very easily due to the high surface energy, which reduces the stability of the catalyst considerably. Synthesis of stable and highly dispersed Pd nanoparticles remains a great challenge. In this thesis, synthesis of highly dispersed Pd NPs using –COOH functionalized 2D hexagonal mesoporous silica SBA-15 (S15C20) and –COOH functionalized 3D cubic mesoporous silica KIT-6 (K6C20) as the supports have been reported. Mesoporous silica supports S15C20 and K6C20 are prepared by one pot co-condensation method. The Pd nanoparticles are immobilized within the mesopores of the supports S15C20 and K6C20 by double agent chemical reduction method. The particle size of Pd NPs ranges from 5.0 to 6.3 nm and 4.8 to 6.0 nm for Pd(x)@S15C20 and Pd(x)@K6C20, respectively, depending on molar amount of Pd loadings. The formation of highly dispersed Pd nanoparticles within the supports could be attributed to the homogenous distribution of the –COOH functional groups in S15C20 and K6C20. The prepared Pd(x)@S15C20 and Pd(x)@K6C20 are used as catalysts for the catalytic hydrodechlorination of chlorobenzene, and the catalytic reduction of environmentally harmful Cr(VI) to Cr (III).
Pd(x)@S15C20 and Pd(x)@K6C20 exhibited superior catalytic activity for the catalytic hydrodechlorination of chlorobenzene under mild conditions with ammonium formate (HCOONH4) as a hydrogen donor. Amongst all the catalysts, Pd(2)@K6C20 exhibits the highest turnover frequency (TOF) of 50 h-1. The Pd(2)@K6C20 also exhibited excellent stability after used for three successive cycles without significant loss of its catalytic activity.
Both the prepared catalysts Pd(x)@S15C20 and Pd(x)@K6C20 could effectively reduce environmentally harmful Cr(VI) to Cr (III) in presence of reducing agent formic acid (HCOOH) and promoter sodium formate (HCOONa) under mild conditions. Amongst all the catalysts, Pd(0.5)@S15C20 exhibited the highest turnover frequency of 8.85 min-1. In addition, Pd(0.5)@S15C20 showed excellent stability and recyclability which could retain high conversion after reuse for five times.
關鍵字(中) ★ 中孔洞矽材 關鍵字(英)
論文目次 中文摘要 I
ABSTRACT II
謝誌 IV
目錄 VI
圖目錄 XI
表目錄 XVII
第一章 序論 1
1-1 中孔洞二氧化矽 1
1-1-1中孔洞材料之介紹 1
1-1-2中孔洞二氧化矽合成方法 4
1-1-3軟性模板-微胞結構 6
1-2 二維及三維中孔洞二氧化矽 10
1-2-1二維與三維的差異 10
1-2-2二維結構SBA-15 11
1-2-3三維結構KIT-6 12
1-3 有序中孔洞有機矽材(PMO’s) 13
1-3-1中孔洞材料表面之官能基修飾方法 14
1-3-2含羧酸官能基之中孔洞材料發展 16
第壹部分 鈀金屬催化氯苯加氫脫氯反應 19
1-4 鈀金屬催化氯苯加氫脫氯反應 19
1-4-1金屬催化氯苯加氫脫氯反應機制介紹 19
1-4-2奈米金屬鈀催化氯苯加氫脫氯反應文獻回顧 20
第貳部分 鈀金屬催化六價鉻還原反應 23
1-5 鈀金屬催化六價鉻還原反應 23
1-5-1六價鉻介紹 23
1-5-2金屬催化六價鉻還原機制介紹 24
1-5-3奈米金屬鈀催化六價鉻還原反應文獻回顧 25
1-6 研究動機與目的 27
第二章 實驗部分 29
2-1 實驗藥品 29
2-2 實驗設備 31
2-2-1實驗合成設備 31
2-2-2實驗鑑定儀器 31
2-3 鑑定儀器之原理 33
2-3-1同步輻射光束線 33
2-3-2 X射線粉末繞射(PXRD) 35
2-3-3傅立葉紅外線吸收光譜儀(FTIR) 36
2-3-4固態核磁共振(Solid State NMR) 37
2-3-5氮氣吸脫附等溫曲線、表面積與孔洞特性鑑定 46
2-3-6穿透式電子顯微鏡(TEM) 51
2-3-7光電子能譜(XPS) 53
2-3-8紫外光-可見光光譜儀(UV-Vis) 54
2-4 實驗步驟 55
2-4-1具羧酸官能基中孔洞矽材SBA-15 (S15C20) 合成 55
2-4-2具羧酸官能基中孔洞矽材KIT-6 (K6C20) 合成 56
2-4-3以硫酸溶液裂解孔洞中的模板 57
2-4-4以PdCl2做為前驅物還原至S15C20與K6C20之中 57
2-5 催化氯苯加氫脫氯重複使用實驗 59
2-5-1 Pd(x)@S15C20與Pd(x)@K6C20催化氯苯加氫脫氯實驗 59
2-5-2催化氯苯加氫脫氯重複使用實驗 60
2-6 鈀金屬催化六價鉻還原反應實驗 61
2-6-1 Pd(x)@S15C20與Pd(x)@S15C20催化六價鉻還原實驗 61
2-6-2催化六價鉻還原重複實驗 61
第三章 結果與討論 62
3-1 Pd(x)@S15C20及Pd(x)@K6C20基本性質鑑定 62
3-1-1 SAXRD繞射圖譜 62
3-1-2 WAXRD繞射圖譜 66
3-1-3 FT-IR光譜 68
3-1-4 13C CP/MAS NMR 70
3-1-5等溫氮氣吸脫附 71
3-1-6 TEM圖像 77
3-1-7 XPS結果分析 89
第壹部分 鈀金屬在中孔洞矽材催化氯苯加氫脫氯反應 92
3-2 鈀金屬催化氯苯加氫脫氯反應實驗 92
3-2-1 Pd(x)@S15C20氯苯加氫脫氯 92
3-2-2 Pd(x)@K6C20氯苯加氫脫氯 94
3-2-3不同材料對催化氯苯加氫脫氯反應之比較 96
3-2-4不同溶劑對催化氯苯加氫脫氯反應之比較 98
3-2-5不同溫度對催化氯苯加氫脫氯反應之比較 100
3-2-6不同鹵苯對催化加氫脫鹵反應之比較 102
3-2-5 Pd(2)@K6C20催化氯苯加氫脫氯重複利用之實驗 105
3-2-5.1 Pd(2)@K6C20 5th回收利用 105
3-2-5.2 Pd(2)@K6C20 5th WAXRD繞射圖譜 105
3-2-5.3 Pd(2)@K6C20 5th TEM圖譜 107
第貳部分 鈀金屬在中孔洞矽材催化六價鉻還原反應 109
3-3 Pd(x)@S15C20及Pd(x)@K6C20六價鉻還原反應 109
3-3-1 Pd(x)@S15C20六價鉻還原 111
3-3-2 Pd(x)@K6C20六價鉻還原 113
3-3-3 Pd(0.5)@S15C20催化六價鉻還原重複利用之實驗 116
3-3-3.1 Pd(0.5)@S15C20 5th回收利用 116
3-3-3.2 Pd(0.5)@S15C20 5th WAXRD繞射圖譜 117
3-3-3.3 Pd(0.5)@S15C20 5th TEM圖譜 118
第四章 結論 120
第五章 參考文獻 122
參考文獻 1. Everett, D. H., MANUAL OF SYMBOLS AND TERMINOLOGY FOR PHYSICOCHEMICAL QUANTITIES AND UNITS APPENDIX II Definitions, Terminology and Symbols in Colloid and Surface Chemistry PART I. Pure Apple. Chem. 1972, 31, 578-638.
2. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 2002, 54 (1), 47-58.
3. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
4. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascon, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater. 2009, 163 (1), 213-21.
5. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater. 2011, 192 (1), 277-83.
6. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. J. Mater. Chem. 2006, 16 (24).
7. Deere, J.; Magner, E.; Wall, J. G.; Hodnett, B. K., Adsorption and activity of cytochrome c on mesoporous silicates. Chem. Commun. 2001, (5), 465-465.
8. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. J. Mater. Sci. 2017, 52 (11), 6322-6340.
9. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols. J. Phys. Chem. C 2012, 116 (11), 6512-6519.
10. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6 (19), 7186-7192.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous Mesoporous Mater. 2017, 247, 23-30.
13. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chem. Phys. Lett. 2004, 396 (4-6), 252-255.
14. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 1996, 8 (8), 1682-1701.
15. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. Engl. 2006, 45 (20), 3216-51.
16. Gibson, L. T., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chem. Soc. Rev. 2014, 43 (15), 5163-72.
17. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chem Commun (Camb) 2013, 49 (10), 943-6.
18. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. J. Am. Chem. Soc. 2005, 127 (20), 7601-7610.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 1976, 72 (0), 1525-1568.
20. Zhang, J.; Li, X.; Li, X., Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Prog. Polym. Sci. 2012, 37 (8), 1130-1176.
21. Evans, D. F.; W., H., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999, (2nd Edition).
22. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843.
23. Han, L.; Che, S., An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Adv. Mater. 2018, 30 (17), 1705708.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 179 (5350), 548.
25. Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. j. Phys. Chem. C 2007, 111 (23), 8268-8277.
26. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, (17), 2136-2137.
27. Almar, L.; Colldeforns, B.; Yedra, L.; Estradé, S.; Peiró, F.; Morata, A.; Andreu, T.; Tarancón, A., High-temperature long-term stable ordered mesoporous Ni–CGO as an anode for solid oxide fuel cells. J. Mater. Chem. A 2013, 1 (14), 4531-4538.
28. Fujita, S.; Inagaki, S., Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities. Chem. Mater. 2008, 20 (3), 891-908.
29. Steel, A.; Carr, S. W.; Anderson, M. W., 29Si solid-state NMR study of mesoporous M41S materials. Chem. Mater. 1995, 7, 1892-1832.
30. Kim, M. H.; Blangord, C. F.; Stein, A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chem. Mater. 1998, 10, 467-470.
31. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping Enzyme in a Functionalized Nanoporous Support. J. Am. Chem. Soc. 2002, 124 (38), 11242-11243.
32. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces. Chem. Commun. 2003, (3), 370-371.
33. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chem. Commun. 2003, (14), 1772-1773.
34. Yang, C.-m.; Wang, Y.; Zibrowius, B.; Schüth, F., Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15. Phys. Chem. Chem. Phys. 2004, 6 (9), 2461-2467.
35. Yiu, H. H. P.; Wright, P. A., Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid. J. Mater. Chem. 2005, 15 (35-36), 3690-3700.
36. Rosenholm, J. M.; Linden, M., Towards establishing structure-activity relationships for mesoporous silica in drug delivery applications. J. Controlled Release 2008, 128 (2), 157-64.
37. Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S.; Fey, G. T.; Kao, H. M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chem. Commun. 2009, (33), 5018-20.
38. Tsai, C. H.; Chang, W. C.; Saikia, D.; Wu, C. E.; Kao, H. M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. J. Hazard. Mater. 2016, 309, 236-48.
39. Hagh, B. F.; Allen, D. T., Catalytic hydroprocessing of chlorinated benzenes. Chem. Eng. Sci. 1990, 45 (8), 2695-2701.
40. Kawabata, T.; Atake, I.; Ohishi, Y.; Shishido, T.; Tian, Y.; Takaki, K.; Takehira, K., Liquid phase catalytic hydrodechlorination of aryl chlorides over Pd–Al-MCM-41 catalyst. Appl. Catal., B 2006, 66 (3-4), 151-160.
41. Wang, X.; Liu, Q.; Xiao, Z.; Chen, X.; Shi, C.; Tao, S.; Huang, Y.; Liang, C., In situ synthesis of Au–Pd bimetallic nanoparticles on amine-functionalized SiO2 for the aqueous-phase hydrodechlorination of chlorobenzene. RSC Adv. 2014, 4 (89), 48254-48259.
42. Mallick, S.; Rana, S.; Parida, K., Liquid Phase Hydrodechlorination of Chlorobenzene over Bimetallic Supported Zirconia Catalyst. Ind. Eng. Chem. Res. 2011, 50 (22), 12439-12448.
43. Hara, T.; Mori, K.; Oshiba, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K., Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen. Green Chem. 2004, 6 (10).
44. Bonarowska, M.; Kaszkur, Z.; Kępiński, L.; Karpiński, Z., Hydrodechlorination of tetrachloromethane on alumina- and silica-supported platinum catalysts. Appl. Catal., B 2010, 99 (1-2), 248-256.
45. Aresta, M.; Dibenedetto, A.; Fragale, C.; Giannoccaro, P.; Pastore, C.; Zammiello, D.; Ferragina, C., Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere 2008, 70 (6), 1052-8.
46. Mishakov, I.; Chesnokov, V.; Buyanov, R.; Pakhomov, N., Decomposition of Chlorinated Hydrocarbons on Iron-Group Metals. Kinet. Catal. 2001, 42, 543-548.
47. Cecilia, J. A.; Infantes-Molina, A.; Rodriguez-Castellon, E.; Jimenez-Lopez, A., Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents. J. Hazard. Mater. 2013, 260, 167-75.
48. Xu, Y.; Ma, J.; Xu, Y.; Li, H.; Li, H.; Li, P.; Zhou, X., Nickel nanoparticles embedded in the framework of mesoporous TiO2: Efficient and highly stable catalysts for hydrodechlorination of chlorobenzene. Appl. Catal., A 2012, 413-414, 350-357.
49. Rath, D.; Parida, K. M., Copper and Nickel Modified MCM-41 An Efficient Catalyst for Hydrodehalogenation of Chlorobenzene at Room Temperature. Ind. Eng. Chem. Res. 2011, 50 (5), 2839-2849.
50. Nriagu, J. O., Chromium in the Natural and Human Environments. 1988, Wiley-Interscience: New York, 81-105.
51. Zhu, K.; Chen, C.; Xu, H.; Gao, Y.; Tan, X.; Alsaedi, A.; Hayat, T., Cr(VI) Reduction and Immobilization by Core-Double-Shell Structured Magnetic Polydopamine@Zeolitic Idazolate Frameworks-8 Microspheres. ACS Sustain. Chem. Eng. 2017, 5 (8), 6795-6802.
52. Zhu, K.; Gao, Y.; Tan, X.; Chen, C., Polyaniline-Modified Mg/Al Layered Double Hydroxide Composites and Their Application in Efficient Removal of Cr(VI). ACS Sustain. Chem. Eng. 2016, 4 (8), 4361-4369.
53. Gao, Y.; Chen, C.; Tan, X.; Xu, H.; Zhu, K., Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 2016, 476, 62-70.
54. Liu, M.; Wen, T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X., Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Trans. 2013, 42 (41), 14710-7.
55. World Health Organization, Guidelines for Drinking Water Quality, WHO, Press, Geneva. 2008.
56. USEPA. Toxicology Reviews of Hexavalent Chromium, CAS No.
18540-29-9; U.S. Environmental Protection Agency: Washington, DC. 1998.
57. Zhitkovich, A., Chromium in drinking water: sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24 (10), 1617-29.
58. Kyung, H.; Lee, J.; Choi, W., Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2 Suspensions under Visible-Light Illumination. Environ. Sci. Technol. 2005, 39 (7), 2376-2382.
59. Wei, Z.; Luo, S.; Xiao, R.; Khalfin, R.; Semiat, R., Characterization and quantification of chromate adsorption by layered porous iron oxyhydroxide: An experimental and theoretical study. J. Hazard. Mater. 2017, 338, 472-481.
60. Wei, Z.; Semiat, R., Applying a modified Donnan model to describe the surface complexation of chromate to iron oxyhydroxide agglomerates with heteromorphous pores. J. Colloid Interface Sci. 2017, 506, 66-75.
61. Rengaraj, S.; Yeon, K.-H.; Moon, S.-H., Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 2001, 87, 273-287.
62. Mori, K.; Dojo, M.; Yamashita, H., Pd and Pd–Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2013, 3 (6), 1114-1119.
63. Yadav, M.; Akita, T.; Tsumori, N.; Xu, Q., Strong metal–molecular support interaction (SMMSI): Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. J. Mater. Chem. 2012, 22 (25).
64. Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M., Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal., B 2016, 180, 53-64.
65. Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S. M., Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Separ. Purif. Technol. 2018, 197, 253-260.
66. Omole, M. A.; K’Owino, I. O.; Sadik, O. A., Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl. Catal., B 2007, 76 (1-2), 158-167.
67. Dandapat, A.; Jana, D.; De, G., Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl. Catal., A 2011, 396 (1-2), 34-39.
68. Yadav, M.; Xu, Q., Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem. Commun. 2013, 49 (32), 3327-9.
69. 潘育麒; 廖家秀; 高憲明, 固態核磁共振技術於孔洞材料之應用. 化學 2004, 66, 209-219.
70. 高憲明, 多核固態核磁共振於孔洞材料 結構鑑定之應用. 化學 2004, 62.
71. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723-1732.
72. Gregg, S. J.; Sing, K. S. W., Adsorption, Surface Area and Porosity 2nd ed., Academic press, New work. 1982.
73. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schuth, F., Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chem. Mater. 2004, 16, 2918-2925.
74. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. J. Power Sources 2013, 243, 431-435.
75. Chen, C. S.; Chen, C. C.; Chen, C. T.; Kao, H. M., Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chem. Commun. 2011, 47 (8), 2288-90.
76. Tian, X.; Liu, M.; Iqbal, K.; Ye, W.; Chang, Y., Facile synthesis of nitrogen-doped carbon coated Fe3O4/Pd nanoparticles as a high-performance catalyst for Cr (VI) reduction. Journal of Alloys and Compounds 2020, 826.
指導教授 高憲明 審核日期 2021-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明