博碩士論文 107821006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:209 、訪客IP:44.213.80.203
姓名 凌稚皓(Chih-Hao Ling)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 定位影響果蠅體色的基因—sable
(Mapping sable, a gene affecting body color in Drosophila melanogaster)
相關論文
★ Genetic Transformation of The Green Algae Micractinium tetrahymenae by Agrobacterium Mediated transformation★ 跳躍子flea插入let-7 complex基因座可能導致mir-100之低表現量,進而造成果蠅存活率降低和發育遲緩
★ 牽牛花果蠅和高山果蠅體型大小與環境因子和體色之間的相關性★ 探討體色與翅班對於牽牛花果蠅性選擇的影響
★ 探討mir-100對於果蠅蛹期存活率的影響★ 果蠅基因與調情—以比較基因體學解碼果蠅翅斑和翅膀展示的共同演化
★ 耐旱性對比茶樹品種干旱響應基因的差異表達模式★ S-palmitoylation is required for meiotic entry in Schizosaccharomyces pombe
★ Comparative transcriptome analysis reveals key pathways underlying drought stress tolerance and characterizes genetic variations for selective breeding in tea plants, Camellia sinensis
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 昆蟲的體色變異影響著昆蟲擬態、求偶等各種適應行為,而控制體色生成與分子遺傳機制的研究則對於了解這類性狀的演化非常重要,已知參與體色調控的基因大多在黑腹果蠅(Drosophila melanogaster)研究發現的,但是仍有一些在此模式物種中發現影響體色的突變尚未被研究分析。其中帶有sable基因突變的果蠅,不但包含體色變深且胸部背板三叉戟黑紋的性狀。為了定位並分析sable基因,本研究利用既有的P-element基因轉殖染色體和兩個已知突變基因作為染色體位置的標定,利用基因重組方法計算 sable與標定突變基因的重組率及相對距離,以推測sable基因座的範圍。此外,我們也使用互補測驗方法,藉由FRT/FLP system,製造5個精準的小片段缺失染色體,並與帶有sable突變的染色體進行互補測試,藉由性狀確認sable基因的位置。我們同時也發現sable突變會導致果蠅的爬行能力下降,另外,為了檢測sable與其他體色相關基因的交互作用,我們將sable突變基因置入影響體色基因的突變背景以觀測該果蠅個體性狀的表現。實驗的結果我們精確地將sable基因縮短至88.0kb,並藉由在該基因突變使爬行能力降低,推斷可能與神經或肌肉發育的Neto基因等位基因突變相似,且sable基因調控果蠅體色的遺傳機制推測位於在yellow基因及ebony基因的上游,且在double mutant的基因型果蠅株,發現有sexual dimorphism的性狀。
摘要(英) Insect body color variation affects various adaptive traits, such as insect mimicry and courtship. Research on the molecular genetic mechanisms controlling body color is very important to understand the evolution of such traits. Most of the genes known to participate in body color regulation in fruit fly, Drosophila melanogaster, have been identified, but some classic body color mutants are yet studied and analyzed. In the sable mutant gene, not only the body color becomes darker but also the black tridents appear on the notum. In order to identify the sable locus, we used six P-element transgenic chromosomes and two known mutant genes as markers to narrow down its position by calculating recombination frequencies. In addition, we also performed complementary tests with 6 precise deletions made by the FRT/FLP system. As a result, the range of the sable gene has been narrowed down from 151.7 kb to 88.0kb, which includes 6 genes. Furthermore, we found the climbing ability of the sable mutant flies is greatly reduced, suggesting similar to Neto gene mutant allele. Also only yellow and ebony mutant phenotypes are exhibited in the double-mutant experiments with sable. This suggests sable may regulate the pigmentation through the genetic mechanism at the upstream of yellow and ebony. sable1 is very likely a Neto mutant allele, because its phenotype of climbing ability is very similar to Neto mutant.
關鍵字(中) ★ 果蠅
★ 體色基因
★ 定位方法
關鍵字(英) ★ Drosophila melanogaster
★ pigmentation gene
★ mapping methods
★ sable
論文目次 目 錄
中文摘要 …………………………………………………………………… i
英文摘要 …………………………………………………………………… ii
誌謝 …………………………………………………………………… iii
目錄 …………………………………………………………………… iv
表目錄 …………………………………………………………………… vi
圖目錄 …………………………………………………………………… vii
一、 緒論 ……………………………………………………………… 1
1-1 昆蟲體色在生物學上的意義 …………………………………… 1
1-2 果蠅體色的研究 ………………………………………………… 2
1-3 影響果蠅體色的其他因素 ………………………………………4
1-4 sable基因的發現 ………………………………………………5
1-5 研究動機 …………………………………………………………6
二、 材料與方法 ………………………………………………………8
2-1 果蠅飼養 …………………………………………………………8
2-2 利用自然重組方法將標記基因置入染色體 ……………………8
2-3 利用P-element計算重組率及標記基因相對距離………………9
2-4 使用FLP/FRT系統製造染色體中的片段缺失 …………………10
2-5 藉由檢測爬行能力確認sable與Neto的關係 …………………10
2-6 以yellow及ebony突變為背景觀察sable1的性狀 ……………11
三、 結果 ………………………………………………………………13
3-1 精確縮短sable基因的位置 ……………………………………13
3-2 Complementation Test ……………………………………………14
3-3 以爬行能力確認sable與Neto基因相似性 ……………………15
3-4 sable基因影響體色的遺傳路徑 …………………………………16
四、 討論 ………………………………………………………………19
4-1 重組率及Complementation Test定位sable基因 ……………19
4-2 候選基因的選擇條件 ……………………………………………20
4-3 爬行能力推測sable基因 …………………………………………20
4-4 yellow基因、ebony基因與sable基因 …………………………23
五、 結論 ………………………………………………………………25
六、 參考文獻 …………………………………………………………26
參考文獻 ARNOULT, L., K. F. SU, D. MANOEL, C. MINERVINO, J. MAGRIÑA et al., 2013 Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science 339: 1423-1426.
BAKER, J. D., and J. W. TRUMAN, 2002 Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. Journal of Experimental Biology 205: 2555-2565.
BILLMANN, M., T. HORN, B. FISCHER, T. SANDMANN, W. HUBER et al., 2016 A genetic interaction map of cell cycle regulators. Molecular biology of the cell 27: 1397-1407.
CALLEJA, M., O. RENAUD, K. USUI, D. PISTILLO, G. MORATA et al., 2002 How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene 292: 1-12.
CAPY, P., J. DAVID and A. ROBERTSON, 1988 Thoracic trident pigmentation in natural populations of Drosophila simulans: a comparison with D. melanogaster. Heredity 61: 263-268.
COX, R., 1987 The Genetics of Drosophila Melanogaster, pp. Andrews University, Biology Department.
DAVID, J., P. CAPY, V. PAYANT and S. TSAKAS, 1985 Thoracic trident pigmentation in Drosophila melanogaster: differentiation of geographical populations. Génétique, sélection, évolution 17: 1-13.
DE CASTRO, S., F. PERONNET, J.-F. GILLES, E. MOUCHEL-VIELH and J.-M. GIBERT, 2018 bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS genetics 14: e1007573.
DEAK, I. I., P. R. BELLAMY, M. BIENZ, Y. DUBUIS, E. FENNER et al., 1982 Mutations affecting the indirect flight muscles of Drosophila melanogaster. Development 69: 61-81.
FAHMY, O. G., FAHMY, M., 1958 New mutants report. D. I. S. 32(): 67--78.
FLAVEN-POUCHON, J., J. V. ALVAREZ, C. ROJAS and J. EWER, 2020 The tanning hormone, bursicon, does not act directly on the epidermis to tan the Drosophila exoskeleton. BMC biology 18: 1-13.
FORSMAN, A., K. RINGBLOM, E. CIVANTOS and J. AHNESJO, 2002 Coevolution of color pattern and thermoregulatory behavior in polymorphic pygmy grasshoppers Tetrix undulata. Evolution 56: 349-360.
FUKUTOMI, Y., K. MATSUMOTO, K. AGATA, N. FUNAYAMA and S. KOSHIKAWA, 2017 Pupal development and pigmentation process of a polka-dotted fruit fly, Drosophila guttifera (Insecta, Diptera). Development genes and evolution 227: 171-180.
GIBERT, J.-M., E. MOUCHEL-VIELH and F. PERONNET, 2018 Pigmentation pattern and developmental constraints: flight muscle attachment sites delimit the thoracic trident of Drosophila melanogaster. Scientific reports 8: 1-7.
GIOVANNUCCI, D. R., and R. S. STEPHENSON, 1999 Identification and distribution of dietary precursors of the Drosophila visual pigment chromophore: analysis of carotenoids in wild type and ninaD mutants by HPLC. Vision research 39: 219-229.
GOMPEL, N., B. PRUD′HOMME, P. J. WITTKOPP, V. A. KASSNER and S. B. CARROLL, 2005 Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433: 481-487.
GRAY, Y. H., M. M. TANAKA and J. A. SVED, 1996 P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics 144: 1601-1610.
HAN, T. H., R. VICIDOMINI, C. I. RAMOS, Q. WANG, P. NGUYEN et al., 2020 Neto-α controls synapse organization and homeostasis at the Drosophila neuromuscular junction. Cell reports 32: 107866.
HOPKINS, T. L., and K. J. KRAMER, 1992 Insect cuticle sclerotization. Annual review of entomology 37: 273-302.
HOTTA, Y., and S. BENZER, 1969 Abnormal electroretinograms in visual mutants of Drosophila. Nature 222: 354-356.
JEONG, S., A. ROKAS and S. B. CARROLL, 2006 Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125: 1387-1399.
KIM, Y.-J., H. BAO, L. BONANNO, B. ZHANG and M. SERPE, 2012 Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Genes & development 26: 974-987.
KIRAGASI, B., P. GOEL, S. PERRY, Y. HAN, X. LI et al., 2020 The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. Proceedings of the National Academy of Sciences 117: 25830-25839.
KOPP, A., I. DUNCAN and S. B. CARROLL, 2000 Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408: 553-559.
LAI, D., X. JIN, H. WANG, M. YUAN and H. XU, 2014 Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin. Journal of biotechnology 185: 51-56.
LARKIN, A., S. J. MARYGOLD, G. ANTONAZZO, H. ATTRILL, G. DOS SANTOS et al., 2021 FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Research 49: D899-D907.
LEPENNETIER, G., and F. CATANIA, 2016 mRNA-associated processes and their influence on exon-intron structure in Drosophila melanogaster. G3: Genes, Genomes, Genetics 6: 1617-1626.
LEWIS, H. W., 1960 Genetic control of dopa oxidase activity in Drosophila melanogaster.I. Analysis of wild type, sable, supressor-of sable and suppressed sable strains. Genetics 45: 1217-1231.
LLOPART, A., S. ELWYN, D. LACHAISE and J. A. COYNE, 2002 Genetics of a difference in pigmentation between Drosophila yakuba and Drosophila santomea. Evolution 56: 2262-2277.
MORDUE, A., 1977 Some effects of amputation of the antennae on pigmentation, growth and development in the locust, Schistocerca gregaria. Physiological Entomology 2: 293-300.
MORGAN, T. H., C. B. BRIDGES and A. H. STURTEVANT, 1925 The genetics of Drosophila. Biblphia Genet. 2: 262pp.
MORGAN, T. H., C. B. BRIDGES and A. H. STURTEVANT, 1988 The genetics of Drosophila. Facsimiles-Garl.
MUNJAL, A., D. KARAN, P. GIBERT, B. MORETEAU, R. PARKASH et al., 1997 Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations. Genetics Selection Evolution 29: 1-10.
PARKS, A. L., K. R. COOK, M. BELVIN, N. A. DOMPE, R. FAWCETT et al., 2004 Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature genetics 36: 288-292.
POOL, J. E., and C. F. AQUADRO, 2007 The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Molecular ecology 16: 2844-2851.
REBEIZ, M., and T. M. WILLIAMS, 2017 Using Drosophila pigmentation traits to study the mechanisms of cis-regulatory evolution. Current opinion in insect science 19: 1-7.
STURM, R. A., 2009 Molecular genetics of human pigmentation diversity. Human molecular genetics 18: R9-R17.
SUNAGA, S., N. AKIYAMA, R. MIYAGI and A. TAKAHASHI, 2016 Factors underlying natural variation in body pigmentation of Drosophila melanogaster. Genes & genetic systems: 15-00061.
TRUE, J. R., 2003 Insect melanism: the molecules matter. Trends in ecology & evolution 18: 640-647.
TRUE, J. R., S.-D. YEH, B. T. HOVEMANN, T. KEMME, I. A. MEINERTZHAGEN et al., 2005 Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet 1: e63.
WITTKOPP, P. J., and P. BELDADE, 2009 Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy, pp. 65-71 in Seminars in cell & developmental biology. Elsevier.
WITTKOPP, P. J., J. R. TRUE and S. B. CARROLL, 2002 Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129: 1849-1858.
YASSIN, A., H. BASTIDE, H. CHUNG, M. VEUILLE, J. R. DAVID et al., 2016 Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nature communications 7: 1-7.
指導教授 葉淑丹(Shu-Dan Yeh) 審核日期 2021-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明