參考文獻 |
1. https://alevelbiology.co.uk/notes/functions-of-proteins/
2. Baskir, Jesse N., T. Alan Hatton, and Ulrich W. Suter. "Protein partitioning in two‐phase aqueous polymer systems." Biotechnology and Bioengineering (1989) 34.4: p. 541-558.8
3. Carlsson, Mats, Per Linse, and Folke Tjerneld. Temperature-dependent protein partitioning in two-phase aqueous polymer systems. Macromolecules 1993. 26.7 : p. 1546-1554.
4. Murari, Gabriella Frade, et al. Use of aqueous two-phase PEG-salt systems for the removal of anionic surfactant from effluents. Journal of environmental management. 2017. 198: p. 43-49.
5. https://ir.nctu.edu.tw/bitstream/11536/102271/1/892113M009016.pdf
6. 陳泊余,「離子液體的發展及其在電化學與其它領域 的應用-獨特的溶劑系統」,CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)June. 2006 Vol. 64, No.2, pp.235~258
7. Earle, Martyn J., and Kenneth R. Seddon. "Ionic liquids. Green solvents for the future." Pure and applied chemistry 72.7 (2000): 1391-1398.
8. 鐘琍菁,「離子液體的發展、挑戰和機會」,工業材料雜誌325期,2014
9. Anthony, Jennifer L., et al. Anion effects on gas solubility in ionic liquids. The Journal of Physical Chemistry B. 109.13 (2005): 6366-6374.
10. Ventura, Sónia PM, et al. Ionic-liquid-based aqueous biphasic systems with controlled pH: the ionic liquid anion effect. Journal of Chemical & Engineering Data 57.2 (2012): 507-512.
11. Shimojo, Kojiro, and Masahiro Goto. First application of calixarenes as extractants in room-temperature ionic liquids. Chemistry letters 33(3), 2004: 320-321.
12. Luo, Huimin, Sheng Dai, and Peter V. Bonnesen. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Analytical Chemistry 76.10 (2004): 2773-2779.
13. Yang, Qiwei, et al. Improved separation efficiency using ionic liquid–cosolvent mixtures as the extractant in liquid–liquid extraction: A multiple adjustment and synergistic effect. Chemical Engineering Journal 181 (2012): 334-342.
14. Kauffman, Stuart Alan, and Marc Ballivet. Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique. U.S. Patent No. 5,763,192. 9 Jun. 1998.
15. Pires, M. J., et al. Improving protein extraction yield in reversed micellar systems through surface charge engineering. Biotechnology and bioengineering 44.7 (1994): 773-780.
16. https://w3.iams.sinica.edu.tw/lab/lphwang/theory.htm
17. Arnold, Lionel K., R. Choudhury, and Devendralal C. Dangoria. The solubility of wheat gluten in various aqueous solutions. Proceedings of the Iowa Academy of Science. Vol. 71. No. 1. 1964.
18. Georgiou, Christos D., et al. Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Analytical and bioanalytical chemistry 391.1 (2008): 391-403.
19. Chial, H., H. Thompson, and A. Splittgerber, A spectral study of the charge forms of Coomassie Blue G. Analytical biochemistry, 1993. 209(2): p. 258-266.
20. Lee, Hakho, et al. Recent developments in magnetic diagnostic systems. Chemical reviews 115.19 (2015): 10690-10724.
21. Thanh, Nguyen TK, ed. Clinical applications of magnetic nanoparticles: From Fabrication to Clinical Applications. CRC Press, 2018.
22. Yao, Li, and Shoujun Xu. Long‐range, high‐resolution magnetic imaging of nanoparticles. Angewandte Chemie 121.31 (2009): 5789-5792.
23. Senyei, Andrew, Kenneth Widder, and George Czerlinski. Magnetic guidance of drug‐carrying microspheres. Journal of Applied Physics 49.6 (1978): 3578-3583.
24. Widder, Kenneth J., Andrew E. Senyei, and Dante G. Scarpelli. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proceedings of the Society for Experimental Biology and Medicine 158.2 (1978): 141-146.
25. Zhao, Yu, et al. Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 71 (2017): 110-116.
26. Wang, Songbai, et al. Magnetic relaxation switch immunosensor for the rapid detection of the foodborne pathogen Salmonella enterica in milk samples. Food control 55 (2015): 43-48.
27. Chen, Yiping, et al. One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation. ACS nano 9.3 (2015): 3184-3191.
28. Massart R., Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17 (1981) 1247-1248.
29. Wan, Jiaqi, et al. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation. Nanotechnology 21.23 (2010): 235104.
30. W.Stöber,A.Fink,Controlled growth of monodisperse silica spheres in the micron size range,J.Colloid InterfaceSci. 26 (1968) 62–69.
31. Satoh, Tomoaki, et al. Particle size distributions produced by hydrolysis and condensation of tetraethylorthosilicate. Journal of chemical engineering of Japan 30.4 (1997): 759-762.
32. Do Kim, Ki, and Hee Taik Kim. Formation of silica nanoparticles by hydrolysis of TEOS using a mixed semi-batch/batch method. Journal of sol-gel science and technology 25.3 (2002): 183-189.
33. Matsoukas, Themis, and Erdogan Gulari. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. (1988).
34. Chou, K-S., and Chen Chih Chen. Preparation and characterization of monodispersed silica colloids. Advances in Technology of Materials and Materials Processing Journal 5.1 (2003): 31-35.
35. Soreta, Tesfaye Refera. Electrochemically deposited metal nanostructures for application in genosensors. Universitat Rovira i Virgili, 2009.
36. Penna, Matthew, et al. Hydration and dynamics of ligands determine the antifouling capacity of functionalized surfaces. The Journal of Physical Chemistry C 123.50 (2019): 30360-30372.
37. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
38. Chen, W.-H., et al., Silanization of solid surfaces via mercaptopropylsilatrane: a new approach of constructing gold colloid monolayers. RSC Advances, 2014. 4(87): p. 46527-46535.
39. Tseng, Y.T., et al., Facile Functionalization of Polymer Surfaces in Aqueous and Polar Organic Solvents via 3-Mercaptopropylsilatrane. ACS Appl Mater Interfaces, 2016. 8(49): p. 34159-34169.
40. Zong, W. J., et al. XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. International Journal of Machine Tools and Manufacture 48.15 (2008): 1678-1687.
41. Patil, S.H., et al., To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochimica Acta, 2018. 265: p. 556-568.
42. Bourlier, Y., et al., Investigation of InAlN Layers Surface Reactivity after Thermal Annealings: A Complete XPS Study for HEMT. ECS Journal of Solid State Science and Technology, 2018. 7(6): p. P329-P338.
43. Bally, R.a. and T. Gribnau, Some aspects of the chromogen 3, 3, 5, 5-tetramethylbenzidine as hydrogen donor in a horseradish peroxidase assay. Clinical Chemistry and Laboratory Medicine, 1989. 27(10): p. 791-796.
44. Rhee, S.G., et al., Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells, 2010. 29(6): p. 539-49.
45. Frasca, Stefano. Biocatalysis on nanostructured surfaces: investigation and application of redox proteins using spectro-electrochemical methods. (2012). |