參考文獻 |
1. Smith, E.F. and C.O. Townsend, A plant-tumor of bacterial origin. Science, 1907. 25(643): p. 671-673.
2. Tierney, M. and K. Lamour, An introduction to reverse genetic tools for investigating gene function. The Plant Health Instructor, 2005.
3. De Cleene, M. and J. De Ley, The host range of crown gall. The Botanical Review, 1976. 42(4): p. 389-466.
4. Barton, I.S., C. Fuqua, and T.G. Platt, Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environmental microbiology, 2018. 20(1): p. 16-29.
5. Agrios, G., Plant pathology. 2012: Elsevier.
6. Stachel, S.E. and P.C. Zambryski, virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 1986. 46(3): p. 325-333.
7. Shimoda, N., et al., Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. Journal of Biological Chemistry, 1993. 268(35): p. 26552-26558.
8. Escobar, M.A. and A.M. Dandekar, Agrobacterium tumefaciens as an agent of disease. Trends in plant science, 2003. 8(8): p. 380-386.
9. Harris, M.O. and A. Pitzschke, Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 2020. 225(5): p. 1852-1872.
10. Lang, J., et al., Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS Pathog, 2014. 10(10): p. e1004444.
11. Lederberg, J. and A.T. McCray, Ome SweetOmics--A genealogical treasury of words. The scientist, 2001. 15(7): p. 8-8.
12. Peterson, J., et al., The NIH human microbiome project. Genome research, 2009. 19(12): p. 2317-2323.
13. Huttenhower, C., et al., Structure, function and diversity of the healthy human microbiome. nature, 2012. 486(7402): p. 207.
14. Müller, D.B., et al., The plant microbiota: systems-level insights and perspectives. Annual review of genetics, 2016. 50: p. 211-234.
15. Dastogeer, K.M., et al., Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 2020: p. 100161.
16. Tian, B.-Y., Y. Cao, and K.-Q. Zhang, Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Scientific reports, 2015. 5(1): p. 1-15.
17. Cui, Z., et al., Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. BioRxiv, 2020.
18. Faist, H., et al., Grapevine (Vitis vinifera) crown galls host distinct microbiota. Applied and environmental microbiology, 2016. 82(18): p. 5542-5552.
19. Gan, H.M., et al., Insight into the microbial co-occurrence and diversity of 73 grapevine (Vitis vinifera) crown galls collected across the Northern Hemisphere. Frontiers in microbiology, 2019. 10: p. 1896.
20. Li, Q., et al., Insight into the bacterial endophytic communities of peach cultivars related to crown gall disease resistance. Applied and environmental microbiology, 2019. 85(9).
21. Wu, D., et al., A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host & Microbe, 2019. 26(5): p. 638-649. e5.
22. Pukatzki, S., et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences, 2006. 103(5): p. 1528-1533.
23. Ho, B.T., T.G. Dong, and J.J. Mekalanos, A view to a kill: the bacterial type VI secretion system. Cell host & microbe, 2014. 15(1): p. 9-21.
24. Costa, T.R., et al., Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews Microbiology, 2015. 13(6): p. 343-359.
25. Wang, J., M. Brodmann, and M. Basler, Assembly and subcellular localization of bacterial type VI secretion systems. Annual review of microbiology, 2019. 73: p. 621-638.
26. Vacheron, J., et al., T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. The ISME journal, 2019. 13(5): p. 1318-1329.
27. Chien, C.-F., et al., HSI-II gene cluster of Pseudomonas syringae pv. tomato DC3000 encodes a functional Type VI secretion system required for interbacterial competition. Frontiers in Microbiology, 2020. 11: p. 1118.
28. Ceseti, L.M., et al., The Xanthomonas citri pv. citri Type VI Secretion System is Induced During Epiphytic Colonization of Citrus. Current microbiology, 2019. 76(10): p. 1105-1111.
29. Kim, N., et al., Type VI secretion systems of plant‐pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence. Molecular plant pathology, 2020. 21(8): p. 1055-1069.
30. Wu, H.-Y., et al., Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. Journal of bacteriology, 2008. 190(8): p. 2841-2850.
31. Ma, L.-S., J.-S. Lin, and E.-M. Lai, An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. Journal of bacteriology, 2009. 191(13): p. 4316-4329.
32. Ma, L.-S., et al., Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell host & microbe, 2014. 16(1): p. 94-104.
33. Wu, C.-F., et al., Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog, 2012. 8(9): p. e1002938.
34. Wu, C.-F., et al., Plant-Pathogenic Agrobacterium tumefaciens strains have diverse type VI effector-immunity pairs and vary in In-Planta competitiveness. Molecular Plant-Microbe Interactions, 2019. 32(8): p. 961-971.
35. Lin, J.-S., L.-S. Ma, and E.-M. Lai, Systematic dissection of the agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PloS one, 2013. 8(7): p. e67647.
36. Hawes, M.C. and L.Y. Smith, Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. Journal of bacteriology, 1989. 171(10): p. 5668-5671.
37. Yakabe, L., S. Parker, and D. Kluepfel, Role of systemic Agrobacterium tumefaciens populations in crown gall incidence on the walnut hybrid rootstock ‘Paradox’. Plant disease, 2012. 96(10): p. 1415-1421.
38. McPherson, M.R., et al., Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. JoVE (Journal of Visualized Experiments), 2018(137): p. e57932.
39. Thijs, S., et al., Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Frontiers in microbiology, 2017. 8: p. 494.
40. Lefèvre, E., C.M. Gardner, and C.K. Gunsch, A novel PCR-clamping assay reducing plant host DNA amplification significantly improves prokaryotic endo-microbiome community characterization. FEMS Microbiology Ecology, 2020. 96(7): p. fiaa110.
41. Bolyen, E., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 2019. 37(8): p. 852-857.
42. Callahan, B.J., et al., DADA2: high-resolution sample inference from Illumina amplicon data. Nature methods, 2016. 13(7): p. 581-583.
43. Rognes, T., et al., VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016. 4: p. e2584.
44. Bokulich, N.A., et al., Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 2018. 6(1): p. 90.
45. Yilmaz, P., et al., The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic acids research, 2014. 42(D1): p. D643-D648.
46. Eddy, S.R., Accelerated profile HMM searches. PLoS Comput Biol, 2011. 7(10): p. e1002195.
47. Janssen, S., et al., Phylogenetic placement of exact amplicon sequences improves associations with clinical information. Msystems, 2018. 3(3).
48. Matsen, F.A., et al., A format for phylogenetic placements. PLoS One, 2012. 7(2): p. e31009.
49. Matsen, F.A., R.B. Kodner, and E.V. Armbrust, pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC bioinformatics, 2010. 11(1): p. 538.
50. Lozupone, C. and R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Applied and environmental microbiology, 2005. 71(12): p. 8228-8235.
51. McMurdie, P.J. and S. Holmes, phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one, 2013. 8(4): p. e61217.
52. Anderson, M.J., A new method for non‐parametric multivariate analysis of variance. Austral ecology, 2001. 26(1): p. 32-46.
53. Jari Oksanen, F., et al., Vegan: community ecology package. R package version, 2018. 2(6).
54. Beckers, B., et al., Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Frontiers in Microbiology, 2016. 7(650).
55. Thijs, S., et al., Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys. Frontiers in Microbiology, 2017. 8(494).
56. Yu, M., et al., Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy to Increase its Competitiveness. Journal of Bacteriology, 2020.
57. Deeken, R., et al., An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach. The Plant Cell, 2006. 18(12): p. 3617-3634.
58. Willems, A., et al., Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). International Journal of Systematic and Evolutionary Microbiology, 1991. 41(3): p. 445-450.
59. Finkel, O.M., et al., A single bacterial genus maintains root growth in a complex microbiome. Nature, 2020. 587(7832): p. 103-108.
60. Moore, L.W., W.S. Chilton, and M.L. Canfield, Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Applied and Environmental Microbiology, 1997. 63(1): p. 201-207.
61. Beauchamp, C.J., et al., Physiological characterization of opine-utilizing rhizobacteria for traits related to plant growth-promoting activity. Plant and soil, 1991. 132(2): p. 273-279.
62. Riker, A., Studies on the influence of some environmental factors on the development of crown gall. J. Agric. Res, 1926. 32: p. 83-96.
63. Banta, L.M., et al., Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. Journal of Bacteriology, 1998. 180(24): p. 6597-6606.
64. Fullner, K.J., J.C. Lara, and E.W. Nester, Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 1996. 273(5278): p. 1107-1109.
65. Lai, E.-M. and C.I. Kado, Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. Journal of Bacteriology, 1998. 180(10): p. 2711-2717.
66. Fitzpatrick, C.R., et al., Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies. Microbiome, 2018. 6(1): p. 1-10.
67. Arenz, B.E., et al., Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. Journal of microbiological methods, 2015. 117: p. 1-3.
68. Vestheim, H. and S.N. Jarman, Blocking primers to enhance PCR amplification of rare sequences in mixed samples–a case study on prey DNA in Antarctic krill stomachs. Frontiers in zoology, 2008. 5(1): p. 1-11. |