博碩士論文 107327021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.221.146.223
姓名 游書品(Shu-Pin Yu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 拔罐與紅外光對人體皮膚組織生理狀況及部位硬度與溫度影響探討
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-10-12以後開放)
摘要(中) 本研究運用光源距離以及發光角度於特定接收位置照度值數值疊加概念,提出一個簡易型的皮膚模型參數計算,將各皮膚層看做是不同距離的接收平面,估算光源預期的作用範圍,致使日後可針對組織內目標位置,設定光源影響的區域大小,反向調整照射光斑直徑以及實驗參數。
在660 nm、780 nm、810 nm以及904 nm正負20 nm範圍內各使用一個波長作為實驗探討,並藉由自建之數學模型計算光療實驗參數。針對施測部位測量硬度及溫度變化,實驗結果發現若該部位原先量測的硬度值低於20,使用紅外LD實驗後該處的肌肉硬度會上升,而原先部位硬度值若大於20,則經過實驗後硬度值會下降。無論是拔罐實驗或是使用紅光-紅外光LD、紅光-紅外光LED的光療實驗,兩者皆會對組織硬度趨勢產生變化,若將前者與後兩者搭配使用,則硬度變化趨勢會與僅單一使用不相同,且LD及LED影響的硬度值趨勢變化也不相同,推測可能與光源本身特性有關係。
實驗部位若屬於較多肌肉分布的部分則最後硬度值會落在約25-30,其次硬度落在15-25,若部位屬於脂肪較多肌肉較少的地方則硬度值約落在5-10,另外如果該部位處位於骨骼上方,且脂肪層薄則硬度值會為在30-40之間,此結果受測驗者本身身體狀態影響很大。綜合整體結果,短期間光療仍屬於對淺層組織有影響,對深部組織的影響則需長期觀察,但若運用在搭配罐療實驗,藉由罐療將相對深層的組織部位,經過負壓作用改變原狀態並進行光療,將可以帶來加成效果,實驗證實選用的紅光-紅外光波段搭配拔罐治療對人體循環及部位緩解具有輔助復原的功效。
摘要(英) In this thesis, the illumination superposition theory is used to perform a simple optical simulation to the skin, the illuminance is related to vertical distance and azimuth. Regard each skin-layer as a receiver in different distance and try to estimate the expected range of the light source. Adjust the diameter of the light source and other experimental parameters according to the distance of the target position in the tissue.Using the value of wavelength offset ±20 nm in the scope of 660 nm, 780 nm, 810 nm and 904nm, calculating the experimental parameters of light therapy through self-built mathematical model.
According to the measurement of the hardness and temperature variety of the target , the results that if the hardness value of the initially measured target is lower than 20, the muscle hardness will increase after exposuring infrared LD. If the hardness value is greater than 20,it will decrease after exposuring. Whether it is the cupping therapy or the red- infrared light therapy with LD or LED, there is a tendency to variety the hardness of the tissue. If the former and the latter two are used in combination, the hardness variety will be different from single. In addition, the hardness values affected by LD and LED have different trends, which may be related to the characteristics of the light source. If the target tissue belongs to the part with more muscle distribution, the hardness value will be reduced to 25-30, and secondly, it will be reduced to 15-25. Otherwise, the part with more fat and less muscle will reduce the hardness value to 5-10. Finally, it is located above the bone with less fat, and the hardness value will be between 30-40.
The results are greatly affected by the physical condition of the subjects. According to the overall results, light therapy will still affect shallow tissues in the short term, and long-term observations are needed for the effects on deep tissues. However, if it is used in combination with cupping therapy, it can change the original state of relatively deep tissues through negative pressure and perform light therapy, which will bring an additive effect. Experiments have confirmed that the selected red-infrared light band combined with cupping therapy is effective Relieving the circulation and parts of the body has the effect of assisting recovery.
關鍵字(中) ★ 紅外光生物調解法
★ 光生物組織窗口
★ 拔罐療法
關鍵字(英) ★ Photobiomodulation
★ Biological Window
★ Cupping therapy
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 3
1-3 文獻回顧 8
1-3-1 皮膚組織模型參數 8
1-3-2 光照技術應用於生物 13
1-3-3 罐療相關技術原理 16
1-4 論文架構 21
第二章 基礎理論 22
2-1 輻射度學 22
2-1-1 輻射功率 22
2-1-2 輻射照度 22
2-2 吸收與散射 22
2-2-1 散射特性 23
2-2-2 組織中的散射現象 25
2-3 光照參數計算 26
2-3-1 吸收係數 27
2-3-2 散射係數 29
2-3-3 光子前進方向 30
2-4 樣條插值法 31
第三章 皮膚模型程式建立 32
3-1 皮膚數學模型 32
3-1-1 模型計算過程 33
3-1-2 照度值計算 35
3-1-3 接收平面照度值計算 36
3-2 光學模擬軟體模擬結果 36
第四章 實驗部分 39
4-1 實驗操作流程 39
4-1-1 實驗流程圖 41
4-1-2 光照實驗參數設定 41
4-1-3 實驗測量結果預期問題 46
4-2 實驗系統架設 46
4-2-1 罐療實驗設備架設 46
4-2-2 光療實驗系統架設 47
4-2-3 拔罐試驗結合紅光照射 49
4-3 實驗結果探討 49
4-3-1 實驗項目分類 49
4-3-2 照射光源使用雷射二極體 51
(一) 偶爾從事運動的受測者 51
(二) 平時無運動習慣的受測者 76
4-3-3 照射光源使用發光二極體 86
(一) 平時無運動習慣的受測者 86
(二) 平時有運動習慣的受測者 96
第五章 結論 114
第六章 未來展望 116
參考文獻 117
附錄 124
參考文獻 [1] HÖNIGSMANN, Herbert. History of phototherapy in dermatology. Photochemical & photobiological sciences, 2013, 12.1: 16-21.
[2] 孫思邈:《千金翼方》,台北:中國醫藥研究所,1980年。
[3] Wikipedia contributors. Infrared. Wikipedia, The Free Encyclopedia. August 25, 2020. Available at: https://en.wikipedia.org/w/index.php?title=Infrared&oldid=974911465.
[4] Wikipedia contributors. Optical window for biological tissues. Wikipedia, The Free Encyclopedia . Wikipedia, The Free Encyclopedia, 1 Feb. 2019. https://reurl.cc/14e0EW
[5] ZEIN, Randa; SELTING, Wayne; HAMBLIN, Michael R. Review of light parameters and photobiomodulation efficacy: dive into complexity. Journal of biomedical optics, 2018, 23.12: 120901.
[6] AVCI, Pinar, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. In: Seminars in cutaneous medicine and surgery. NIH Public Access, 2013. p. 41.
[7] A+醫學百科,「雷射在醫學上的應用」,取自網路:https://reurl.cc/MdbbQL
[8] Chen, Chang-Kai.,《雷射安全級數分類概論》,Laser safety and regulation in dental practice, Laser dentistry. 28. 2014.
[9] 世界雷射治療組織(WALT-World Association for Photobiomodulation Therapy),取自網路:https://waltza.co.za/documentation-links/recommendations/dosage-recommendations/
[10] LEDinside of TRENDFORCE Corp.,「源於太空的紅光LED治療燈具,如今廣泛用於美容市場」,取自網路:https://www.ledinside.com.tw/news/20171221-34849.html
[11] LEDinside of TRENDFORCE Corp.,「利用紅光、近紅外 LED 光療原理,新技術轉化太陽光做皮膚修復」,取自網路資料:https://www.ledinside.com.tw/news/20171208-34813.html
[12] JACQUES, S.L. (1998) Skin Optics Summary. Oregon Medical Laser Center News. http://omlc.org/news/jan98/skinoptics.html
[13] RAVNBAK, Mette Henriksen. Objective determination of Fitzpatrick skin type. Dan Med Bull, 2010, 57.8: B4153.
[14] 長庚桃園美容醫學中心,醫學新知:色素斑面面觀,取自網路: https://www1.cgmh.org.tw/cosmetic/contents/medi10.htm
[15] DE HULST, Van; CHRISTOFFEL, Hendrik. Multiple light scattering: tables, formulas and applications. 1980.
[16] WANG, Lihong; JACQUES, Steven L. Monte Carlo modeling of light transport in multi-layered tissues in standard C. The University of Texas, MD Anderson Cancer Center, Houston, 1992, 4-11.
[17] CHEN, Rong, et al. The optical model of human skin. Acta Laser Biology Sinica, 2005, 14.6: 401.
[18] NASOURI, Babak; MURPHY, Thomas E.; BERBEROGLU, Halil. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm. Journal of Biomedical Optics, 2014, 19.7: 075003.
[19] ANDERSON, R. Rox, et al. The optics of human skin. Journal of investigative dermatology, 1981, 77.1: 13-19.
[20] KOTTMANN, Jonas; REY, Julien M.; SIGRIST, Markus W. Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics. Sensors, 2016, 16.10: 1663.
[21] XUE, Dongdong; GUO, Zhenning. Study on Light Source Spectrum of Jaundice Phototherapy Apparatus, Optoelectronics, 2018, 8.4:201-209
[22] TUNER, Jan; HODE, Lars. Laser therapy: clinical practice and scientific background: a guide for research scientists, doctors, dentists, veterinarians and other interested parties within the medical field. Prima books, 2002.
[23] ESNOUF, Alan, et al. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupuncture & electro-therapeutics research, 2007, 32.1-2: 81-86.
[24] 程麗玲、胡靜慧:《光生物安全要求與檢測(簡體書)》,第一版,浙江:浙江大學出版社,2015年。
[25] ASH, Caerwyn, et al. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers in medical science, 2017, 32.8: 1909-1918.
[26] Laser Biological Hazards-Skin , Skin hazards, Environmental Health and Safety , LASER SAFETY TRAINING ,Oregon State University,Corvallis,Available at:https://ehs.oregonstate.edu/laser/training/laser-biological-hazards-skin
[27] KOLARI, P. J. Penetration of unfocused laser light into the skin. Archives of dermatological research, 1985, 277.4: 342-344.
[28] KOLARI, Pertti J.; AIRAKSINEN, Olavi. Poor penetration of infra-red and helium neon low power laser light into the dermal tissue. Acupuncture & electro-therapeutics research, 1993, 18.1: 17-21.
[29] BYRNES, Kimberly R., et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2005, 36.3: 171-185.
[30] JOENSEN, Jon, et al. Skin penetration time-profiles for continuous 810 nm and Superpulsed 904 nm lasers in a rat model. Photomedicine and laser surgery, 2012, 30.12: 688-694.
[31] HENDERSON, Theodore A.; MORRIES, Larry D. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?. Neuropsychiatric disease and treatment, 2015, 11: 2191.
[32] ALGHAMDI, Khalid M.; KUMAR, Ashok; MOUSSA, Noura A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in medical science, 2012, 27.1: 237-249.
[33] CHUNG, Hoon, et al. The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 2012, 40.2: 516-533.
[34] SHIRANI, Amir Mansour, et al. Low-level laser therapy and myofacial pain dysfunction syndrome: a randomized controlled clinical trial. Lasers in medical science, 2009, 24.5: 715-720.
[35] BAROLET, Daniel, et al. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. Journal of Investigative Dermatology, 2009, 129.12: 2751-2759.
[36] CHANG, Wen-Dien, et al. Carpal tunnel syndrome treated with a diode laser: a controlled treatment of the transverse carpal ligament. Photomedicine and laser surgery, 2008, 26.6: 551-557.
[37] EMANET, Saniye Konur; ALTAN, Lale Inceoglu; YURTKURAN, Merih. Investigation of the effect of GaAs laser therapy on lateral epicondylitis. Photomedicine and laser surgery, 2010, 28.3: 397-403.
[38] LAM, Liz Kit Yin; CHEING, Gladys Lai Ying. Effects of 904-nm low-level laser therapy in the management of lateral epicondylitis: a randomized controlled trial. Photomedicine and laser surgery, 2007, 25.2: 65-71.
[39] SIMUNOVIC, Zlatko; TROBONJACA, Tatjana; TROBONJACA, Zlatko. Treatment of medial and lateral epicondylitis—tennis and golfer′s elbow—with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. Journal of clinical laser medicine & surgery, 1998, 16.3: 145-151.
[40] DE ALMEIDA, Patrícia, et al. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better?. Lasers in medical science, 2012, 27.2: 453-458.
[41] SOUZA‐BARROS, Leanna, et al. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics. Lasers in surgery and medicine, 2018, 50.4: 291-301.
[42] HAMBLIN, Michael R.; DEMIDOVA, Tatiana N. Mechanisms of low level light therapy. In: Mechanisms for low-light therapy. International Society for Optics and Photonics, 2006. p. 614001.
[43] 吳季華:《慢性病治療的新曙光:雷射針灸簡介》,台北:書泉出版社,2019年。
[44] KOTTMANN, Jonas; REY, Julien M.; SIGRIST, Markus W. Mid-Infrared photoacoustic detection of glucose in human skin: towards non-invasive diagnostics. Sensors, 2016, 16.10: 1663.
[45] 陳俊頴:〈皮膚反射光譜分析技術與其光譜特徵變化在皮膚組織生理狀況監測之應用〉,碩士論文,國立交通大學,民國107年8月。
[46] 中國醫藥大學附設醫院,記住PRICE口訣運動傷害的現場評估與處置,取自網路:https://www.cmuh.cmu.edu.tw/NewsInfo/NewsArticle?no=4629
[47] 林新醫院,急性的運動傷害該如何處置,取自網路:https://reurl.cc/r8Dxo4
[48] DUBOIS, Blaise; ESCULIER, Jean-Francois. Soft-tissue injuries simply need PEACE and LOVE. 2020.
[49] 臧俊岐:《經絡全書(典藏精品版)》,黑龍江科學技術出版社,2012年。
[50] 罐器規格圖片參考來源取自網路:https://images.app.goo.gl/ithBjDDMeTJcRg1U6
[51] 崔帥、崔瑾:〈拔罐療法的負壓效應機制研究進展〉,《針刺研究》,第三十七卷第六期,2012年,506¬¬¬ 510頁。
[52] 張莉等編著:〈拔罐療法對人體局部血紅蛋白的影響及分析〉,《中國針灸》,第十期,2001年,619-621頁。
[53] LOWE, Duane T. Cupping therapy: An analysis of the effects of suction on skin and the possible influence on human health. Complementary therapies in clinical practice, 2017, 29: 162-168.
[54] 未秋平、馮強:〈罐斑產生機制探討〉,《實用中醫藥雜誌》,第一期,2008年,54-55頁。
[55] 趙喜新等編著:〈感冒人群與正常人群在拔罐療法中的罐斑顯色差別研究〉,《河南中醫學院學報》,第五期,2005年,24-25頁。
[56] 趙喜新等編著:〈時間和壓力因素對拔罐罐斑顏色影響的初步觀察〉,《中國針灸》,第五期,2009年,385-388頁。
[57] 田宇瑛,秦麗娜,張維波:〈不同拔罐負壓對皮膚血流量影響的初步觀察〉,《針刺研究》,第三期,2007年,184-185頁。
[58] 石垣英俊著:《肌筋膜x經絡穴位x激痛點對症手療身體疼痛地圖全書》, 林美琪譯,方言文化,2019年。
[59] 陳彥文,肌筋膜「列車軌道般的網絡連結」,中榮醫訊 NO.259,取自網路:
https://www.vghtc.gov.tw/UploadFiles/Images/EDM/1684c508-b4af-465e-8305-6f5fc251988d_2.pdf
[60] DORSHER, P. T.; FLECKENSTEIN, J. Trigger points and classical acupuncture points: part 1: qualitative and quantitative anatomic correspondences. Deutsche Zeitschrift für Akupunktur, 2008, 51.3: 15-24.
[61] 大台北尖端儀器有限公司-皮膚硬度計TDM-N1,取自網路:http://www.abtek.com.tw/product_detail.asp?pro_ser=14634909
[62] ZHANG, D., et al. Research on the acupuncture principles and meridian phenomena by means of infrared thermography. Zhen ci yan jiu= Acupuncture Research, 1990, 15.4: 319-323.
[63] SCHLEBUSCH, Klaus-Peter; MARIC-OEHLER, Walburg; POPP, Fritz-Albert. Biophotonics in the infrared spectral range reveal acupuncture meridian structure of the body. Journal of Alternative & Complementary Medicine, 2005, 11.1: 171-173.
[64] XIE, Shusen, et al. Optically noninvasive measurement of the light transport properties of human meridians. Chinese Optics Letters, 2008, 6.12: 928-931.
[65] YANG, HongQin, et al. On optics of human meridians. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52.4: 502-507.
[66] University of Cyprus Biomedical Imaging and Applied Optics Biomedical Imaging and Applied Optics,Tissue Optical Properties. https://reurl.cc/m9lq2A
[67] OMLC(Oregon Medical Laser Center), Oregon Health & Science University, Portland, Oregon, USA, https://omlc.org/spectra/hemoglobin/
[68] VAN GEMERT, M. J. C., et al. Skin optics. IEEE Transactions on biomedical engineering, 1989, 36.12: 1146-1154.
[69] BINZONI, Tiziano, et al. The use of the Henyey–Greenstein phase function in Monte Carlo simulations in biomedical optics. Physics in Medicine & Biology, 2006, 51.17: N313.
[70] 郭英勝等編著:《實用Python程式設計-第二版》,台北:碁峯資訊股份有限公司,2018年。
[71] THORLABS,DET36A/M Si Biased Detector,User Guide.
取自網路:https://www.thorlabs.com/drawings/1b37e2bbc7cdb63a-5044CE40-0C45-5DF6-9C0FF698FE32828A/DET36A_M-Manual.pdf
[72] HUANG, Ying-Ying, et al. Biphasic dose response in low level light therapy. Dose-response, 2009, 7.4: 09-027.
[73] LOG, Torgrim. Modeling burns for pre-cooled skin flame exposure. International journal of environmental research and public health, 2017, 14.9: 1024.
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2020-10-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明