博碩士論文 107226020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.145.69.150
姓名 黃冠儒(Guan-Ru Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高效率有機/無機複合式垂直發光電晶體
(High-Efficiency Organic/Inorganic Integrated Vertical Light- Emitting Transistor)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-17以後開放)
摘要(中) 本論文研究整合無機氧化鋅電晶體和有機發光二極體(OLED),製作高效

率之垂直發光電晶體。氧化鋅電晶體為上接觸/下閘極之結構,依序以透明

導電膜(ITO)為閘極,接著使用原子層沉積製作三氧化二鋁和氧化鉿作為高

介電係數之雙介電層以及 N 型氧化鋅半導體層,接著以光學微影的方式,

利用 LOR 及光阻的雙層結構,鍍製絕緣層氧化矽包覆銀源極來抑制關狀態

電流,最後在氧化鋅電晶體上方堆疊OLED,OLED 陽極即為垂直電晶體之

上汲極。本論文研究兩種 OLED 以驗證可堆疊在垂直電晶體之有機材料廣

泛性,分別為旋轉塗佈高分子 Super Yellow 製作黃光 OLED 和蒸鍍磷光分
子 Ir(ppy)3 之綠光 OLED。本論文也以Super Yellow 發光電晶體為架構探討

梳狀源極設計對電晶體表現的影響,藉此找出源極的優化參數。將優化的垂

直發光電晶體與標準 OLED 進行比較,發現在驅動電壓、電流密度、發光

強度與效率上非常接近,證明將 OLED 整合在氧化鋅電晶體上不會降低元

件表現。整體而言,兩種發光電晶體皆具備低驅動電壓(<3V)、高開口率
(>90%)、高電流密度(50-100 mA/cm2)、和高電流開/關比(104)。此外,電晶

體發光區域與氧化鋅圖樣高度對應,且發光均勻,顯示大量電子在高導電度

的氧化鋅電晶體中可橫向傳導數百微米的距離再向上注入至 OLED,因此

發光面積可透過光學微影氧化鋅圖樣來準確定義。
摘要(英) This thesis studies the integration of inorganic zinc oxide transistors and
organic light-emitting diodes (OLED) to produce high-efficiency vertical light-
emitting transistors. The zinc oxide transistor is a top-contact/bottom-gate
structure, and transparent conductive film (ITO) is used as gate in sequence, and
then aluminum oxide and hafnium oxide are deposited by atomic layer
deposition(ALD) as a double dielectric layer with high dielectric constant and N-
type zinc oxide semiconductor layer, and then using the double-layer structure of
LOR and photoresist by photolithography, the insulating layer is coated with
silicon oxide to cover the silver source to suppress the off-state current, and finally
on the zinc oxide transistor stacked OLED, the anode of OLED is the drain above
the vertical transistor. This thesis studies two OLEDs to verify the versatility of
organic materials that can be stacked on vertical transistors which are spin-coated
polymer Super Yellow to produce yellow light OLED and vapor-deposit
phosphorescent molecules Ir(ppy)3 green light OLED. This thesis also uses the
Super Yellow light-emitting transistor as the framework to explore the influence
of designed comb-shaped source on the performance of the transistor to find the
optimal parameters of the source. Comparing the optimized vertical light-emitting
transistor with the standard OLED, it is found that the driving voltage, current
density, luminous intensity and efficiency are very close, which proves that the
integration of OLED on the zinc oxide transistor will not reduce the component
performance. Overal, both light-emitting transistors have low driving voltage
(<3V), high aperture ratio (>90%), high current density (50-100 mA/cm2), and
high current on/off ratio (104) . In addition, the light-emitting area of the transistor


vii



and the zinc oxide pattern are highly corresponding to each other, and the light is
uniform, showing that a large number of electrons can be conducted laterally in
the high-conductivity zinc oxide transistor for a distance of hundreds of microns
and then injected upwards into the OLED. Therefore, the luminous area can be
accurately defined through the zinc oxide pattern of optical lithography.
關鍵字(中) ★ 有機
★ 外部量子效應
★ 垂直電晶體
★ 氧化鋅
★ 有機發光二極體
關鍵字(英) ★ Organic
★ External Quantum Efficiency
★ Vertical Transistor
★ Zno
★ Organic Light-Emitting Diode
論文目次 摘要 ....................................................................................................................... v
Abstract ................................................................................................................ vi
致謝 .................................................................................................................... viii

目錄 ...................................................................................................................... ix

圖目錄 ................................................................................................................. xii

表目錄 ................................................................................................................ xvi

第一章 緒論 ......................................................................................................... 1

1-1 前言 ...................................................................................................... 1

1-2 有機薄膜電晶體 .................................................................................. 2

1-3 垂直式電晶體...................................................................................... 4

1-4 有機發光二極體 ................................................................................. 8

1-5 研究動機與目的 ................................................................................. 9

第二章 基本原理 ............................................................................................... 10

2-1 垂直電晶體工作原理 ....................................................................... 10

2-1-1 垂直電晶體-轉換特性曲線與開/關電流比 ............................ 15

2-2 有機發光二極體工作原理 ............................................................... 16


x



2-2-1 有機發光二極體結構與理論 ................................................... 16

2-2-2 量子效率(Quantum Efficiency) .............................................. 19

第三章 實驗方法與架構 ................................................................................... 20

3-1 實驗材料及結構 ................................................................................. 20

3-1-1 介電體層材料 ........................................................................ 21

3-1-2 半導體層材料 ........................................................................ 22

3-1-3 有機發光層材料 .................................................................... 23

3-1-4 金屬源極材料 ........................................................................ 25

3-2 實驗儀器 ............................................................................................ 26

3-2-1 熱蒸鍍機(Thermal Evaporation Coater) ............................... 26

3-2-2 原子層沉積(Atomic Layer Deposition, ALD) ...................... 27

3-2-3 手動式光罩接合對準器(Mask and Bond Aligner) ............... 28

3-2-4 紫外光臭氧清潔機(UV-Ozone) ............................................ 29

3-2-5 旋轉塗佈機(Spin Coator) ...................................................... 30

3-2-6 阻抗分析儀(LF Impedance Analyzer) ................................... 30

3-2-7 手套箱(Glove Box) ................................................................ 31

3-2-8 半導體參數分析儀(Semiconductor Parameter Analyzer, SPA)
............................................................................................................. 32
3-3 垂直發光電晶體實驗方法及製程 ................................................... 33

第四章 結果與討論 ........................................................................................... 39


xi



4-1 低電壓驅動下注入式垂直有機發光電晶體 ..................................... 39

4-1-1 下注入式氧化鋅垂直電晶體 .................................................................. 39

4-1-2 阻擋層SiOx ............................................................................................ 40

4-1-3 低電壓驅動下注入式高分子有機發光電晶體 ...................................... 41

4-2 圖案化梳狀源極 ................................................................................. 45

4-2-1 不同數量梳狀源極 .................................................................................. 45

4-2-2 不同 間距梳狀源極 ................................................................................ 49

4-3 低電壓驅動下注入式小分子有機發光電晶體 ................................. 52

第五章 結論與未來展望 ................................................................................... 59

參考文獻 ............................................................................................................. 60

參考文獻 [1] C.-T. Lee and C.-H. Lee, "Conversion efficiency improvement
mechanisms of polymer solar cells by balance electron–hole mobility
using blended P3HT: PCBM: pentacene active layer," Organic
Electronics, vol. 14, pp. 2046-2050, 2013.
[2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, et al., "High-
efficiency solution processable polymer photovoltaic cells by self-
organization of polymer blends," in Materials For Sustainable Energy: A
Collection of Peer-Reviewed Research and Review Articles from Nature
Publishing Group, ed: World Scientific, 2011, pp. 80-84.
[3] H. Du, Z. Deng, J. Lun, M. Zhou, Y. Yin, Y. Zou, et al., "Pentacene
doping for the efficiency improvement of polymer solar cells," Synthetic
metals, vol. 161, pp. 2083-2086, 2011.
[4] J. Zhong, X. Wu, S. Lan, Y. Fang, H. Chen, and T. Guo, "High
performance flexible organic phototransistors with ultrashort channel
length," ACS Photonics, vol. 5, pp. 3712-3722, 2018.
[5] D. Yang, L. Zhang, H. Wang, Y. Wang, Z. Li, T. Song, et al., "Pentacene-
based photodetector in visible region with vertical field-effect transistor
configuration," IEEE Photonics Technology Letters, vol. 27, pp. 233-236,
2014.
[6] P. Pattanasattayavong, S. Rossbauer, S. Thomas, J. G. Labram, H. J.
Snaith, and T. D. Anthopoulos, "Solution-processed dye-sensitized ZnO
phototransistors with extremely high photoresponsivity," Journal of
Applied Physics, vol. 112, p. 074507, 2012.
[7] J. Huang, J. Du, Z. Cevher, Y. Ren, X. Wu, and Y. Chu, "Printable and
flexible phototransistors based on blend of organic semiconductor and
biopolymer," Advanced Functional Materials, vol. 27, p. 1604163, 2017.
[8] G. Lee, I.-H. Lee, H.-L. Park, S.-H. Lee, J. Han, C. Lee, et al., "Vertical
organic light-emitting transistor showing a high current on/off ratio
through dielectric encapsulation for the effective charge pathway,"
Journal of Applied Physics, vol. 121, p. 024502, 2017.
[9] H. Yu, Z. Dong, J. Guo, D. Kim, and F. So, "Vertical organic field-effect
transistors for integrated optoelectronic applications," ACS applied
materials & interfaces, vol. 8, pp. 10430-10435, 2016.
[10] K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, and K. Kudo,


61



"Metal-insulator-semiconductor-type organic light-emitting transistor on
plastic substrate," Applied physics letters, vol. 89, p. 103525, 2006.
[11] H. Kwon, M. Kim, H. Cho, H. Moon, J. Lee, and S. Yoo, "Toward High‐
Output Organic Vertical Field Effect Transistors: Key Design Parameters,"
Advanced Functional Materials, vol. 26, pp. 6888-6895, 2016.
[12] A. J. Ben‐Sasson, M. Greenman, Y. Roichman, and N. Tessler, "The
mechanism of operation of lateral and vertical organic field effect
transistors," Israel Journal of Chemistry, vol. 54, pp. 568-585, 2014.
[13] Y. Huang, J. Sun, J. Zhang, S. Wang, H. Huang, J. Zhang, et al.,
"Controllable thin-film morphology and structure for 2, 7-dioctyl [1]
benzothieno [3, 2-b][1] benzothiophene (C8BTBT) based organic field-
effect transistors," Organic Electronics, vol. 36, pp. 73-81, 2016.
[14] J.-F. Chang, K.-S. Hou, Y.-W. Yang, C.-H. Wang, Y.-X. Chen, and H.-D.
Ke, "Enhanced mobility for increasing on-current and switching ratio of
vertical organic field-effect transistors by surface modification with
phosphonic acid self-assembled monolayer," Organic Electronics, p.
105689, 2020.
[15] M. McCarthy, B. Liu, E. Donoghue, I. Kravchenko, D. Kim, F. So, et al.,
"Low-voltage, low-power, organic light-emitting transistors for active
matrix displays," Science, vol. 332, pp. 570-573, 2011.
[16] H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, et al., "Highly π‐
extended copolymers with diketopyrrolopyrrole moieties for high‐
performance field‐effect transistors," Advanced materials, vol. 24, pp.
4618-4622, 2012.
[17] J.-F. Chang, H.-S. Shie, Y.-W. Yang, and C.-H. Wang, "Study on
correlation between structural and electronic properties of fluorinated
oligothiophenes transistors by controlling film thickness," Crystals, vol. 9,
p. 144, 2019.
[18] L. Ma and Y. Yang, "Unique architecture and concept for high-
performance organic transistors," Applied physics letters, vol. 85, pp.
5084-5086, 2004.
[19] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.
L. Frey, et al., "Patterned electrode vertical field effect transistor
fabricated using block copolymer nanotemplates," Applied Physics
Letters, vol. 95, p. 302, 2009.
[20] K.-Y. Wu, Y.-T. Tao, C.-C. Ho, W.-L. Lee, and T.-P. Perng, "High-
performance space-charge-limited transistors with well-ordered
nanoporous aluminum base electrode," Applied Physics Letters, vol. 99, p.


62



185, 2011.
[21] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, and N.
Tessler, "Self-assembled metallic nanowire-based vertical organic field-
effect transistor," ACS applied materials & interfaces, vol. 7, pp. 2149-
2152, 2015.
[22] C.-M. Keum, I.-H. Lee, S.-H. Lee, G. J. Lee, M.-H. Kim, and S.-D. Lee,
"Quasi-surface emission in vertical organic light-emitting transistors with
network electrode," Optics Express, vol. 22, pp. 14750-14756, 2014.
[23] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic
crystals," The Journal of Chemical Physics, vol. 38, pp. 2042-2043, 1963.
[24] N. Stutzmann, R. H. Friend, and H. Sirringhaus, "Self-aligned, vertical-
channel, polymer field-effect transistors," Science, vol. 299, pp. 1881-
1884, 2003.
[25] G. Sheleg, M. Greenman, B. Lussem, and N. Tessler, "Removing the
current-limit of vertical organic field effect transistors," Journal of
Applied Physics, vol. 122, p. 195502, 2017.
[26] F. M. Sawatzki, D. H. Doan, H. Kleemann, M. Liero, A. Glitzky, T.
Koprucki, et al., "Balance of horizontal and vertical charge transport in
organic field-effect transistors," Physical Review Applied, vol. 10, p.
034069, 2018.
[27] Y. Fang, X. Wu, S. Lan, J. Zhong, D. Sun, H. Chen, et al., "Inkjet-printed
vertical organic field-effect transistor arrays and their image sensors,"
ACS applied materials & interfaces, vol. 10, pp. 30587-30595, 2018.
[28] H. Choi, S. Seo, J.-H. Lee, S.-H. Hong, J. Song, S. Kim, et al., "Solution-
processed ZnO/SnO 2 bilayer ultraviolet phototransistor with high
responsivity and fast photoresponse," Journal of Materials Chemistry C,
vol. 6, pp. 6014-6022, 2018.
[29] S. Gambino, A. K. Bansal, and I. D. Samuel, "Photophysical and charge-
transporting properties of the copolymer SuperYellow," Organic
Electronics, vol. 14, pp. 1980-1987, 2013.
[30] Y.-N. Lai, C.-H. Chang, P.-C. Wang, and Y.-H. Chu, "Highly efficient
flexible organic light-emitting diodes based on a high-temperature durable
mica substrate," Organic Electronics, vol. 75, p. 105442, 2019.
[31] S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, et al.,
"Characteristics of the ZnO thin film transistor by atomic layer deposition
at various temperatures," Semiconductor science and technology, vol. 24,
p. 035015, 2009.
[32] Q. Chen, Y. Yan, X. Wu, S. Lan, D. Hu, Y. Fang, et al., "High-


63



Performance Quantum-Dot Light-Emitting Transistors Based on Vertical
Organic Thin-Film Transistors," ACS applied materials & interfaces, vol.
11, pp. 35888-35895, 2019.



[33] 羅郁仁,“無機/有機異質介面垂直發光電晶體之研究”,國立中央大

學,碩士論文,民國 109 年。
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2020-12-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明