博碩士論文 100387002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.147.78.111
姓名 葉雲熒(Yun-Ying Yeh)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 次波長週期性結構對CMOS-MEMS熱電堆的紅外線吸收特性探討
(Discussion on infrared absorption characteristics of CMOS-MEMS thermopile device with subwavelength arrays structure)
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-13以後開放)
摘要(中) 本論文基於台灣半導體製造公司所提供的0.35μm 2P4M互補式金屬氧化物半導體微機電系統(CMOS-MEMS)製程的規範,研究符合該製程的熱電堆裝置的預設紅外線吸收區域之次波長週期性結構對紅外線吸收能力的影響。
首先於數值分析前,將根據台灣半導體製造公司的製程規範,調整所需之結構參數,並委託台灣半導體製造公司利用整合CMOS專業製程的優勢進行打樣,製作出符合所需參數的半導體試製樣品,在這些製造出來的樣品量測的結果與模擬分析的結果相似。
經由上述製程規範,利用模擬方式探討了許多次波長週期性結構參數對CMOS-MEMS熱電堆的紅外線吸收特性的效應,探討不同的次波長週期性結構後,發現以六邊形排列的次波長孔洞結構結果明顯優於以四邊形排列的次波長孔洞結構結果,當目標溫度在60°C時,比不使用次波長孔洞的結構時高3.532倍,此外還發現一個特殊的結果,即是在先前研究之長方形次波長孔洞中,若保留部分材料,發現在加入具有新形式的次波長柱狀結構後也可增加感測器的敏感度,總體最佳結果為當應用理想製程中最小線寬之設定,當目標溫度在60°C時,比不使用次波長孔洞的結構時高3.629倍,以及發現在不對稱型次波長結構最佳結果中,而當目標溫度在60°C時,比不使用次波長孔洞的結構時高3.666倍。顯然,當在熱電堆裝置的有效區域中加入次波長孔洞結構時,可以發現紅外吸收率很明顯的增強,因此對次波長孔洞結構之參數的優化是絕對必要的。
摘要(英) This research based on the 0.35μm2P4M complementary metal-oxide-semiconductor micro-electro-mechanical-systems (CMOS-MEMS) process specification provided by Taiwan semiconductor manufacturing company (TSMC), and studies the subwavelength periodic structure of the preset infrared absorption region of the thermopile device that meets the process Influence on infrared absorption capacity. A thermopile device with sub-wavelength hole array (SHA) is numerically and experimentally investigated. The infrared absorbance (IRA) effect of SHAs in active area of the thermopile device is clearly analyzed by the finite-difference time-domain (FDTD) method. The prototypes are manufactured by the 0.35 μm 2P4M CMOS-MEMS process in TSMC. The measurement results of those prototypes are similar to their simulation results. Based on the simulation technology, more sub-wavelength hole structural effects for IRA of such thermopile device are discussed. It is found from simulation results that the results of SHAs arranged in a hexagonal shape are significantly better than the results of SHAs arranged in a square and the infrared absorption efficiencies (IAEs) of specific asymmetric rectangle and elliptical hole structure arrays are higher than the relatively symmetric square and circular hole structure arrays and the overall best result is up to 3.532, 3.629 and 3.666 times higher than that without sub-wavelength structure at the target temperature of 60˚C when the minimum structure line width limit of the process is ignored. Obviously, the IRA can be enhanced when the SHAs are considered in active area of the thermopile device and the structural optimization of the SHAs is absolutely necessary.
關鍵字(中) ★ 次波長
★ 熱電堆
★ 紅外線輻射
★ 紅外線吸收
★ 互補式金屬氧化物半導體
★ 微機電系統
關鍵字(英) ★ sub-wavelength
★ thermopile
★ infrared radiation
★ infrared absorbance
★ CMOS-MEMS
★ MEMS
論文目次 目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 X
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 論文架構 7
第2章 模擬方法與紅外線熱型感測器相關理論 9
2-1 有限時域差分法 9
2-1-1 馬克斯威爾方程式 9
2-1-2 FDTD方程式 10
2-1-3 邊界條件 12
2-1-4 完美吸收層(Perfectly matched layer, PML) 13
2-2 熱傳導遞理論 14
2-3 紅外線感測器簡介 18
2-3-1 熱型感測器簡介 19
2-3-2 熱電偶的工作原理 21
2-4 CMOS-MEMS製程 22
第3章 次波長週期性結構對CMOS-MEMS熱電堆設計與模擬 26
3-1 次波長週期性結構對CMOS-MEMS熱電堆設計流程 27
3-2 元件原理與設計 29
3-3 次波長週期性結構對CMOS-MEMS熱電堆模擬分析 32
3-3-1 模擬架構與方法 33
3-3-2 製程設計 37
3-3-3 模擬結果 38
第4章 次波長週期性結構對CMOS-MEMS熱電堆製作與量測 42
4-1 次波長週期性結構對CMOS-MEMS熱電堆元件之研究與製程 42
4-2 量測系統整合 45
4-2-1 量測系統設計與架設 45
4-2-2 量測電路設計與製作 45
4-3 晶片之打線與封裝 46
4-4 熱電元件賽貝克效應之紅外線輻射源訊號規劃與量測 48
第5章 次波長週期性結構對CMOS-MEMS熱電堆最佳化設計 53
5-1 理想製程中最小線寬結構設計分析 53
5-2 線寬2.5 μm結構設計分析 64
5-3 最佳化次波長孔洞結構分析 69
5-4 一種特殊次波長結構之設計 73
5-5 不對稱型次波長結構之設計 78
5-6 模擬結果討論 82
第6章 結論與未來展望 85
6-1 結論 85
6-2 未來展望 86
參考文獻 87
已發表之論文 94
參考文獻 參考文獻
[1] Weste, N. H., & Eshraghian, K. (1985). Principles of CMOS VLSI design: a systems perspective. STIA, 85, 47028.
[2] 徐泰然. (2003).微機電系與微系統設計與製造.普林斯頓出版社.
[3] Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P., & Nakamura, S. (2004). Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied physics letters, 84(6), 855-857.
[4] Hünig, R., Mertens, A., Stephan, M., Schulz, A., Richter, B., Hetterich, M., ... & Gomard, G. (2016). Flower power: exploiting plants′ epidermal structures for enhanced light harvesting in thin‐film solar cells. Advanced Optical Materials, 4(10), 1487-1493.
[5] Tekin, T. (2011). Review of packaging of optoelectronic, photonic, and MEMS components. IEEE Journal of Selected Topics in Quantum Electronics, 17(3), 704-719.
[6] Clapham, P. B., & Hutley, M. C. (1973). Reduction of lens reflexion by the “Moth Eye” principle. Nature, 244(5414), 281-282.
[7] Land, M. F., & Nilsson, D. E. (2012). Animal eyes. Oxford University Press.
[8] Murch, W. (2001). In the Blink of an Eye (Vol. 995). Los Angeles: Silman-James Press.
[9] Biro, L. P., & Vigneron, J. P. (2011). Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser & Photonics Reviews, 5(1), 27-51.
[10] Dullemeijer, P. (1999). The Self-Made Tapestry: Pattern Formation in Nature. Science, 284(5420), 1627-1627.
[11] Rogalski, A. (2010). Infrared detectors. CRC press.
[12] Graf, A., Arndt, M., Sauer, M., & Gerlach, G. (2007). Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 18(7), R59.
[13] Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., & Tabata, O. (2017). Thermoelectric energy conversion: basic concepts and device applications. John Wiley & Sons.
[14] Xu, D., Wang, Y., Xiong, B., & Li, T. (2017). MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12(4), 557-566.
[15] Van Herwaarden, A. W. (2005). Overview of calorimeter chips for various applications. Thermochimica Acta, 432(2), 192-201.
[16] Rubio, R., Santander, J., Fonseca, L., Sabate, N., Gracia, I., Cane, C., ... & Marco, S. (2007). Non-selective NDIR array for gas detection. Sensors and Actuators B: Chemical, 127(1), 69-73.
[17] Gad-el-Hak, M. (Ed.). (2001). The MEMS handbook. CRC press.
[18] Ekwall, B., & Cronquist, M. (2011). Micro electro mechanical systems (MEMS): Technology, fabrication processes and applications. Nova Science Publ.
[19] Maboudian, R. (1998). Surface processes in MEMS technology. Surface Science Reports, 30(6), 207.
[20] Fedder, G. K., Chae, J., Najafi, K., Denison, T., Kuang, J., Lewis, S., & Kulah, H. (2005). BMonolithically integrated inertial sensors,in Advanced Micro and Nanosystems, H. Baltes, O. Brand, GK Fedder, C. Hierold, JG Korvink, and O. Tabata, Eds.
[21] Xu, D., Wang, Y., Xiong, B., & Li, T. (2017). MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12(4), 557-566.
[22] Gu, M., Bai, P., Chu, H. S., & Li, E. P. (2012). Design of subwavelength CMOS compatible plasmonic photodetector for nano-electronic-photonic integrated circuits. IEEE Photonics Technology Letters, 24(6), 515-517.
[23] Brand, O., Fedder, G. K., Baltes, H., Hierold, C., Korvink, J. G., & Tabata, O. (Eds.). (2013). Cmos-Mems. Wiley-VCH.
[24] Xu, D., Wang, Y., Xiong, B., & Li, T. (2017). MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12(4), 557-566.
[25] Gu, M., Bai, P., Chu, H. S., & Li, E. P. (2012). Design of subwavelength CMOS compatible plasmonic photodetector for nano-electronic-photonic integrated circuits. IEEE Photonics Technology Letters, 24(6), 515-517.
[26] C. H. Shen, S. J. Chen, and Y. T. Guo, “A novel infrared temperature measurement with dual mode modulation of thermopile sensor.” Sensors 19, no. 2 (2019): 336.
[27] Chen, S. J., & Chen, B. (2020). Research on a CMOS-MEMS infrared sensor with reduced graphene oxide. Sensors, 20(14), 4007.
[28] Chen, W. C., Fang, W., & Li, S. S. (2011). A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits. Journal of Micromechanics and Microengineering, 21(6), 065012.
[29] Qu, H. (2016). CMOS MEMS fabrication technologies and devices. Micromachines, 7(1), 14.
[30] Graf, A., Arndt, M., Sauer, M., & Gerlach, G. (2007). Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 18(7), R59.
[31] Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., & Tabata, O. (2017). Thermoelectric energy conversion: basic concepts and device applications. John Wiley & Sons.
[32] Fouladi Mahani, F., Mahanipour, A., & Mokhtari, A. (2019). Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions. Journal of AI and Data Mining, 7(2), 279-286.
[33] Matsumoto, T., Eom, K. S., & Baba, T. (2006). Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate. Optics letters, 31(18), 2786-2788.
[34] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2008). Molding the flow of light. Princeton Univ. Press, Princeton, NJ [ua].
[35] Inoue, K., & Ohtaka, K. (Eds.). (2004). Photonic crystals: physics, fabrication and applications (Vol. 94). Springer Science & Business Media.
[36] Urbas, A. M., Jacob, Z., Dal Negro, L., Engheta, N., Boardman, A. D., Egan, P., ... & DeVault, C. (2016). Roadmap on optical metamaterials. Journal of Optics, 18(9), 093005.
[37] Kamali, S. M., Arbabi, E., Arbabi, A., & Faraon, A. (2018). A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7(6), 1041-1068.
[38] Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2002). All-angle negative refraction without negative effective index. Physical Review B, 65(20), 201104.
[39] Berrier, A., Mulot, M., Swillo, M., Qiu, M., Thylén, L., Talneau, A., & Anand, S. (2004). Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Physical review letters, 93(7), 073902.
[40] Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., & Kawakami, S. (1998). Superprism phenomena in photonic crystals. Physical review B, 58(16), R10096.
[41] Sun, S., Yang, K. Y., Wang, C. M., Juan, T. K., Chen, W. T., Liao, C. Y.& Zhou, L. (2012). High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano letters, 12(12), 6223-6229.
[42] Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical review letters, 85(18), 3966.
[43] Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical review letters, 100(20), 207402.
[44] Lončar, M., Doll, T., Vučković, J., & Scherer, A. (2000). Design and fabrication of silicon photonic crystal optical waveguides. Journal of lightwave technology, 18(10), 1402.
[45] Baba, T., Matsumoto, T., & Echizen, M. (2004). Finite difference time domain study of high efficiency photonic crystal superprisms. Optics Express, 12(19), 4608-4613.
[46] Musa, S. M. (Ed.). (2017). Computational Nanotechnology Using Finite Difference Time Domain. CRC Press.
[47] Shi, S., Chen, C., & Prather, D. W. (2004). Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. JOSA A, 21(9), 1769-1775.
[48] Leung, K. M., & Qiu, Y. (1993). Multiple-scattering calculation of the two-dimensional photonic band structure. Physical Review B, 48(11), 7767.
[49] Li, Z. Y., & Lin, L. L. (2003). Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E, 67(4), 046607.
[50] Shen, C. H., Yeh, Y. Y., & Chen, C. F. (2019). A thermopile device with subwavelength structure by CMOS-MEMS technology. Applied Sciences, 9(23), 5118.
[51] Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3), 302-307.
[52] Berenger, J-P. "Improved PML for the FDTD solution of wave-structure interaction problems." IEEE transactions on Antennas and Propagation 45.3 (1997): 466-473.
[53] Boyer, T. H. (2003). Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum. American Journal of Physics, 71(9), 866-870.
[54] 林耕舜. (2006). CMOS 熱電式紅外線微感測器之設計, 製造與系統整合. 清華大學動力機械工程學系學位論文, 1-79.
[55] 林威勳. (2005). 以 CMOS/MEMS 及電化學蝕刻製程實作新型紅外線感測元件. 成功大學微機電系統工程研究所學位論文, 1-78.
[56] Randjelovic, D., Kaltsas, G., Lazic, Z., & Popovic, M. (2002, May). Multipurpose thermal sensor based on Seebeck effect. In 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No. 02TH8595) (Vol. 1, pp. 261-264). IEEE.
[57] Muanghlua, R., Cheirsirikul, S., & Supadech, S. (2000, September). The study of silicon thermopile. In 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No. 00CH37119) (Vol. 3, pp. 226-229). Ieee.
[58] Al Khalfioui, M., Michez, A., Giani, A., Boyer, A., & Foucaran, A. (2003). Anemometer based on Seebeck effect.
[59] 蔡承軒. (2006). 主動式熱電元件之特性分析與量測研究, 製造與系統整合. 國立彰化師範大學機電工程學系學位論文, 1-102.
[60] Schneeberger, N., Paul, O., & Baltes, H. (1995, June). Optimized structured absorbers for CMOS infrared detectors. In Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS′95 (Vol. 2, pp. 648-651). IEEE.
[61] Chen, S. J., & Shen, C. H. (2008). A novel two-axis CMOS accelerometer based on thermal convection. IEEE Transactions on Instrumentation and Measurement, 57(8), 1572-1577.
[62] Sheen, C. S., & Chi, S. (2001). A new process technique for complementary metal-oxide-semiconductor [CMOS] compatible sensors. Sensors and materials, 13(1), 057-066.
[63] 周晉宇. (2006).新穎紅外線光子晶體 CMOSMEMS感測器熱輻射特性研究. 國立彰化師範大學機電工程學系學位論文, 1-84.
[64] Shen, C. H., Yeh, Y. Y., & Chen, C. F. (2019). A thermopile device with subwavelength structure by CMOS-MEMS technology. Applied Sciences, 9(23), 5118.
[65] Yeh, Y. Y., Shen, C. H., & Chen, C. F. (2020). Infrared absorption efficiency enhancement of the CMOS compatible thermopile by the special subwavelength hole arrays. Applied Sciences, 10(8), 2966.
[66] Chen, C. F., Shen, C. H., & Yeh, Y. Y. (2020). Enhanced Infrared Absorbance of the CMOS Compatible Thermopile by the Subwavelength Rectangular-Hole Arrays. Sensors, 20(11), 3218.
[67] Taflove, A., & Hagness, S. C. (2005). Computational Electrodynamics: The Finite-difference Time-domain Method by Allen Taflove and Susan C Hagness. Artech House.
[68] Lim, M., Lee, S. S., & Lee, B. J. (2013). Near-field thermal radiation between graphene-covered doped silicon plates. Optics express, 21(19), 22173-22185.
[69] Kitamura, R., Pilon, L., & Jonasz, M. (2007). Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied optics, 46(33), 8118-8133.
[70] Bitter, R., Mohiuddin, T., & Nawrocki, M. (2017). LabVIEW: Advanced programming techniques. CRC press.
[71] Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: the open source electronics prototyping platform. Maker Media, Inc.
[72] Yang, S. M., Lee, T., & Jeng, C. A. (2009). Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process. Sensors and Actuators A: Physical, 153(2), 244-250.
[73] Wang, W., & Zhang, Y. P. (2004). 0.18-μm CMOS push-pull power amplifier with antenna in IC package. IEEE Microwave and Wireless Components Letters, 14(1), 13-15.
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明