參考文獻 |
參考文獻
[1] Weste, N. H., & Eshraghian, K. (1985). Principles of CMOS VLSI design: a systems perspective. STIA, 85, 47028.
[2] 徐泰然. (2003).微機電系與微系統設計與製造.普林斯頓出版社.
[3] Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P., & Nakamura, S. (2004). Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied physics letters, 84(6), 855-857.
[4] Hünig, R., Mertens, A., Stephan, M., Schulz, A., Richter, B., Hetterich, M., ... & Gomard, G. (2016). Flower power: exploiting plants′ epidermal structures for enhanced light harvesting in thin‐film solar cells. Advanced Optical Materials, 4(10), 1487-1493.
[5] Tekin, T. (2011). Review of packaging of optoelectronic, photonic, and MEMS components. IEEE Journal of Selected Topics in Quantum Electronics, 17(3), 704-719.
[6] Clapham, P. B., & Hutley, M. C. (1973). Reduction of lens reflexion by the “Moth Eye” principle. Nature, 244(5414), 281-282.
[7] Land, M. F., & Nilsson, D. E. (2012). Animal eyes. Oxford University Press.
[8] Murch, W. (2001). In the Blink of an Eye (Vol. 995). Los Angeles: Silman-James Press.
[9] Biro, L. P., & Vigneron, J. P. (2011). Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser & Photonics Reviews, 5(1), 27-51.
[10] Dullemeijer, P. (1999). The Self-Made Tapestry: Pattern Formation in Nature. Science, 284(5420), 1627-1627.
[11] Rogalski, A. (2010). Infrared detectors. CRC press.
[12] Graf, A., Arndt, M., Sauer, M., & Gerlach, G. (2007). Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 18(7), R59.
[13] Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., & Tabata, O. (2017). Thermoelectric energy conversion: basic concepts and device applications. John Wiley & Sons.
[14] Xu, D., Wang, Y., Xiong, B., & Li, T. (2017). MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12(4), 557-566.
[15] Van Herwaarden, A. W. (2005). Overview of calorimeter chips for various applications. Thermochimica Acta, 432(2), 192-201.
[16] Rubio, R., Santander, J., Fonseca, L., Sabate, N., Gracia, I., Cane, C., ... & Marco, S. (2007). Non-selective NDIR array for gas detection. Sensors and Actuators B: Chemical, 127(1), 69-73.
[17] Gad-el-Hak, M. (Ed.). (2001). The MEMS handbook. CRC press.
[18] Ekwall, B., & Cronquist, M. (2011). Micro electro mechanical systems (MEMS): Technology, fabrication processes and applications. Nova Science Publ.
[19] Maboudian, R. (1998). Surface processes in MEMS technology. Surface Science Reports, 30(6), 207.
[20] Fedder, G. K., Chae, J., Najafi, K., Denison, T., Kuang, J., Lewis, S., & Kulah, H. (2005). BMonolithically integrated inertial sensors,in Advanced Micro and Nanosystems, H. Baltes, O. Brand, GK Fedder, C. Hierold, JG Korvink, and O. Tabata, Eds.
[21] Xu, D., Wang, Y., Xiong, B., & Li, T. (2017). MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12(4), 557-566.
[22] Gu, M., Bai, P., Chu, H. S., & Li, E. P. (2012). Design of subwavelength CMOS compatible plasmonic photodetector for nano-electronic-photonic integrated circuits. IEEE Photonics Technology Letters, 24(6), 515-517.
[23] Brand, O., Fedder, G. K., Baltes, H., Hierold, C., Korvink, J. G., & Tabata, O. (Eds.). (2013). Cmos-Mems. Wiley-VCH.
[24] Xu, D., Wang, Y., Xiong, B., & Li, T. (2017). MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12(4), 557-566.
[25] Gu, M., Bai, P., Chu, H. S., & Li, E. P. (2012). Design of subwavelength CMOS compatible plasmonic photodetector for nano-electronic-photonic integrated circuits. IEEE Photonics Technology Letters, 24(6), 515-517.
[26] C. H. Shen, S. J. Chen, and Y. T. Guo, “A novel infrared temperature measurement with dual mode modulation of thermopile sensor.” Sensors 19, no. 2 (2019): 336.
[27] Chen, S. J., & Chen, B. (2020). Research on a CMOS-MEMS infrared sensor with reduced graphene oxide. Sensors, 20(14), 4007.
[28] Chen, W. C., Fang, W., & Li, S. S. (2011). A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits. Journal of Micromechanics and Microengineering, 21(6), 065012.
[29] Qu, H. (2016). CMOS MEMS fabrication technologies and devices. Micromachines, 7(1), 14.
[30] Graf, A., Arndt, M., Sauer, M., & Gerlach, G. (2007). Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 18(7), R59.
[31] Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., & Tabata, O. (2017). Thermoelectric energy conversion: basic concepts and device applications. John Wiley & Sons.
[32] Fouladi Mahani, F., Mahanipour, A., & Mokhtari, A. (2019). Optimized design of nanohole array-based plasmonic color filters integrating genetic algorithm with FDTD solutions. Journal of AI and Data Mining, 7(2), 279-286.
[33] Matsumoto, T., Eom, K. S., & Baba, T. (2006). Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate. Optics letters, 31(18), 2786-2788.
[34] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2008). Molding the flow of light. Princeton Univ. Press, Princeton, NJ [ua].
[35] Inoue, K., & Ohtaka, K. (Eds.). (2004). Photonic crystals: physics, fabrication and applications (Vol. 94). Springer Science & Business Media.
[36] Urbas, A. M., Jacob, Z., Dal Negro, L., Engheta, N., Boardman, A. D., Egan, P., ... & DeVault, C. (2016). Roadmap on optical metamaterials. Journal of Optics, 18(9), 093005.
[37] Kamali, S. M., Arbabi, E., Arbabi, A., & Faraon, A. (2018). A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7(6), 1041-1068.
[38] Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2002). All-angle negative refraction without negative effective index. Physical Review B, 65(20), 201104.
[39] Berrier, A., Mulot, M., Swillo, M., Qiu, M., Thylén, L., Talneau, A., & Anand, S. (2004). Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Physical review letters, 93(7), 073902.
[40] Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., & Kawakami, S. (1998). Superprism phenomena in photonic crystals. Physical review B, 58(16), R10096.
[41] Sun, S., Yang, K. Y., Wang, C. M., Juan, T. K., Chen, W. T., Liao, C. Y.& Zhou, L. (2012). High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano letters, 12(12), 6223-6229.
[42] Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical review letters, 85(18), 3966.
[43] Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical review letters, 100(20), 207402.
[44] Lončar, M., Doll, T., Vučković, J., & Scherer, A. (2000). Design and fabrication of silicon photonic crystal optical waveguides. Journal of lightwave technology, 18(10), 1402.
[45] Baba, T., Matsumoto, T., & Echizen, M. (2004). Finite difference time domain study of high efficiency photonic crystal superprisms. Optics Express, 12(19), 4608-4613.
[46] Musa, S. M. (Ed.). (2017). Computational Nanotechnology Using Finite Difference Time Domain. CRC Press.
[47] Shi, S., Chen, C., & Prather, D. W. (2004). Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. JOSA A, 21(9), 1769-1775.
[48] Leung, K. M., & Qiu, Y. (1993). Multiple-scattering calculation of the two-dimensional photonic band structure. Physical Review B, 48(11), 7767.
[49] Li, Z. Y., & Lin, L. L. (2003). Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E, 67(4), 046607.
[50] Shen, C. H., Yeh, Y. Y., & Chen, C. F. (2019). A thermopile device with subwavelength structure by CMOS-MEMS technology. Applied Sciences, 9(23), 5118.
[51] Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3), 302-307.
[52] Berenger, J-P. "Improved PML for the FDTD solution of wave-structure interaction problems." IEEE transactions on Antennas and Propagation 45.3 (1997): 466-473.
[53] Boyer, T. H. (2003). Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum. American Journal of Physics, 71(9), 866-870.
[54] 林耕舜. (2006). CMOS 熱電式紅外線微感測器之設計, 製造與系統整合. 清華大學動力機械工程學系學位論文, 1-79.
[55] 林威勳. (2005). 以 CMOS/MEMS 及電化學蝕刻製程實作新型紅外線感測元件. 成功大學微機電系統工程研究所學位論文, 1-78.
[56] Randjelovic, D., Kaltsas, G., Lazic, Z., & Popovic, M. (2002, May). Multipurpose thermal sensor based on Seebeck effect. In 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No. 02TH8595) (Vol. 1, pp. 261-264). IEEE.
[57] Muanghlua, R., Cheirsirikul, S., & Supadech, S. (2000, September). The study of silicon thermopile. In 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No. 00CH37119) (Vol. 3, pp. 226-229). Ieee.
[58] Al Khalfioui, M., Michez, A., Giani, A., Boyer, A., & Foucaran, A. (2003). Anemometer based on Seebeck effect.
[59] 蔡承軒. (2006). 主動式熱電元件之特性分析與量測研究, 製造與系統整合. 國立彰化師範大學機電工程學系學位論文, 1-102.
[60] Schneeberger, N., Paul, O., & Baltes, H. (1995, June). Optimized structured absorbers for CMOS infrared detectors. In Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS′95 (Vol. 2, pp. 648-651). IEEE.
[61] Chen, S. J., & Shen, C. H. (2008). A novel two-axis CMOS accelerometer based on thermal convection. IEEE Transactions on Instrumentation and Measurement, 57(8), 1572-1577.
[62] Sheen, C. S., & Chi, S. (2001). A new process technique for complementary metal-oxide-semiconductor [CMOS] compatible sensors. Sensors and materials, 13(1), 057-066.
[63] 周晉宇. (2006).新穎紅外線光子晶體 CMOSMEMS感測器熱輻射特性研究. 國立彰化師範大學機電工程學系學位論文, 1-84.
[64] Shen, C. H., Yeh, Y. Y., & Chen, C. F. (2019). A thermopile device with subwavelength structure by CMOS-MEMS technology. Applied Sciences, 9(23), 5118.
[65] Yeh, Y. Y., Shen, C. H., & Chen, C. F. (2020). Infrared absorption efficiency enhancement of the CMOS compatible thermopile by the special subwavelength hole arrays. Applied Sciences, 10(8), 2966.
[66] Chen, C. F., Shen, C. H., & Yeh, Y. Y. (2020). Enhanced Infrared Absorbance of the CMOS Compatible Thermopile by the Subwavelength Rectangular-Hole Arrays. Sensors, 20(11), 3218.
[67] Taflove, A., & Hagness, S. C. (2005). Computational Electrodynamics: The Finite-difference Time-domain Method by Allen Taflove and Susan C Hagness. Artech House.
[68] Lim, M., Lee, S. S., & Lee, B. J. (2013). Near-field thermal radiation between graphene-covered doped silicon plates. Optics express, 21(19), 22173-22185.
[69] Kitamura, R., Pilon, L., & Jonasz, M. (2007). Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied optics, 46(33), 8118-8133.
[70] Bitter, R., Mohiuddin, T., & Nawrocki, M. (2017). LabVIEW: Advanced programming techniques. CRC press.
[71] Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: the open source electronics prototyping platform. Maker Media, Inc.
[72] Yang, S. M., Lee, T., & Jeng, C. A. (2009). Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process. Sensors and Actuators A: Physical, 153(2), 244-250.
[73] Wang, W., & Zhang, Y. P. (2004). 0.18-μm CMOS push-pull power amplifier with antenna in IC package. IEEE Microwave and Wireless Components Letters, 14(1), 13-15. |