博碩士論文 107329025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.145.163.232
姓名 許壬瀚(Ren-Han,Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質
(On the microstructure and property of 3-D Cu-Ni alloying micro features electrodeposited from citrate)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文採用微陽極導引電鍍法,自含銅、鎳之檸檬酸鈉鍍浴中製備銅鎳合金微柱,內容在探討析鍍物之表面形貌、組成、晶體構造與性質受鍍浴pH值與陰、陽兩極偏壓之影響。結果顯示:在4.0 V偏壓下,鍍浴pH 由4.5增加至6.5時,所得微柱的晶粒稍有增大(由13nm增加至14nm),表面形貌趨向平坦化,所含鎳由33.5%增至54.8%。在鍍浴pH 4.5下,電壓自4.0 V增高至4.6 V,微柱的晶粒稍有細化(由13nm到11nm),鎳含量由33.5%增至52.6%。XRD分析顯示微柱為異質同晶(isomorphous )之銅鎳合金。進一步EPMA分析顯示: 微柱內部銅與鎳之分布之均勻性受實驗條件之影響。鍍浴pH 自 4.5升高到6.5 有助於微柱中銅與鎳分布較均勻化。因微柱屬於奈米晶體,以奈米壓痕器測得硬度可高達6.9 GPa,比一般商用銅鎳合金(0.6~1.65GPa)高出許多。
藉由動態陰極極化曲線、配合定電位下電化學阻抗頻譜之分析,可以說明電壓改變情況下銅鎳合金組成差異之反應機制。經COMSOL軟體實驗中之電場分布,有助於說明微柱之表面形貌與組成之變化。陰、陽極間之圓柱形電場,顯示柱心處電場較強(電力線分布較高),由陰極極化結果可知電場較強,鎳優先析鍍,因而微柱中心鎳組成偏高,鍍浴若由pH4.5上升到6.5,柱中心與周圍之電場分布差逐漸接近,且銅之螯合物以(Cu2Cit2H−2)4−)比(Cu2Cit2H−1)3−占優勢,促使銅、鎳有較均勻之分布。量測電流對時間關係圖可估計析鍍電量,對應微柱重量,可計算出微柱析鍍之電流效率,電流效率最高達到76.1%。電壓增大與pH的升高下,電流效率下降。
應用上,銅鎳合金微柱的恆電位實驗有助於研究其作為葡萄糖感測器的可行性。結果顯示: 微柱組成會影響電流密度偵測之線性範圍,(銅/鎳at%)若在60/40 at%時,線性區域在0mM至3.0mM之間,比組成銅/鎳at%在40/60時,線性區域在0mM至0.25mM稍大,然而後者對葡萄糖濃度靈敏度較高。本製程所得銅鎳微柱對葡萄糖感測之靈敏度,比其他材料高,由文獻得知原因可能是因為微柱的奈米晶粒,使電極表面上的電催化活性位置大幅增加,增進電子轉移之數量。
摘要(英) Micro-anode guided electroplating (MAGE) process was employed to prepare copper-nickel alloy micro-pillars in the citrate bath containing nickel and copper ions.The effect of the bath pH and the voltage between cathode and anode on the surface morphology, composition, crystal structure and the properties of the pillars was studied.The results indicated that for the MAGE conducted at 4.0 V, with the bath pH increasing from 4.5 to 6.5, the micropillars were fabricated to show a more fattened surface, a slight increase in their grain sizes from 13 nm to 14 nm, and an increase of Ni-content 33.5% to 54.8%. On other hand, for MAGE performed at pH 4.5 with increasing the voltage from 4.0 V to 4.6 V, the micropillars revealed a little decrease in grain sizes (from 13nm to 11nm), and the nickel content increased from 33.5% to 52.6%. XRD analysis showed that the micropillars belonged to isomorphous Cu-Ni alloys. Analysis by EPMA revealed that concentrated nickel was found at the central pillars as they fabricated from the bath with pH of 4.5. The distribution of Ni and Cu tended to more uniform when the MAGE performed in the bath with increasing pH from 4.5 to 6.5,. Because of the nanocrystals inside the micropillars, the hardness evaluated by a nanoindenter testing displayed the highest value at 6.9 GPa, which is much higher than those (0.6 ~ 1.65 GPa) for common commercial Cu-Ni alloys.
Cathodic polarization curve can explain the changing ratio of Cu-Ni alloy at variable voltages. The simulation of electric field distribution in MAGE by COMSOL gives the way to comprehend dependence of the surface morphology and composition of the micropillars on the experimental conditions. The chelate change promote a more even distribution of copper and nickel. The current efficiency can be calculated by current vs. time and the weight of micro-pillars. The current efficiency can reach to 76.1%.
Constant potential experiment can study the feasibility of Cu-Ni alloy micropillars as glucose sensors. The results of the studys show that the composition will affect the linear range of current density detection.When (Cu-Ni at%) is 60/40 at%, the linear region is 0mM to 3.0mM; When (Cu-Ni at%) is 40/60 at%, the linear region is 0 mM and 0.25 mM.The increasing of nickel results smaller linear region but the glucose concentration is more sensitive.The Cu-Ni micropillars in this process obtain higher sensitivity than other materials because the grains of micropillars are nanocrystalline Nanocrystal grains of the micropillars greatly increase the electrocatalytic active sites on the electrode surface and increase the amount of electron transfer.
關鍵字(中) ★ 微陽極導引電鍍
★ 銅鎳合金
★ 葡萄糖感測器
★ 檸檬酸鈉螯合物
★ 銅鎳電鍍分佈
★ 場發射電子微探分析
關鍵字(英) ★ MAGE
★ Copper-Nickel alloy
★ glucose sensor
★ citrate chelate
★ distribution of copper –nickel electrodeposition
★ EPMA
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 x
圖目錄 xii
壹、 前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
貳、 原理學說與文獻回顧 5
2.1 銅鎳合金電鍍原理 5
2.2銅鎳合金平板電鍍原理及文獻回顧 7
2.2.1銅鎳鍍浴種類 7
2.2.2檸檬酸鹽鍍浴配方之選用與其原理之文獻回顧 9
2.3微電鍍原理與文獻回顧 13
2.4 奈米壓痕對材料硬度及楊氏模數之應用 16
2.5 COMSOL電場模擬軟體之有限元素分析 18
2.6 葡萄糖傳感器原理及文獻回顧 20
參、研究方法 22
3.1研究流程 22
3.2實驗前準備 23
3.2.1微陽極與陰極製備 23
3.2.2電鍍槽與迴流裝置製作 23
3.2.3鍍液配方 24
3.3 電鍍實驗步驟 24
3.3.1微陽極導引電鍍製備銅鎳合金微柱 24
3.3.2電鍍電壓控制 25
3.3.3鍍浴pH值調整 25
3.4分析儀器 25
3.4.1陰極極化曲線及EIS測試 25
3.4.2微柱之表面形貌觀察與其組成分析 27
3.4.3微柱之橫剖面及縱切面之組成分佈分析 27
3.4.4奈米壓痕試驗 28
3.4.5 葡萄糖感測之電化學測試 29
肆、結果 30
4.1鍍浴pH值對微柱形貌之影響 30
4.2電鍍偏壓對微柱形貌之影響 32
4.3微柱之成分及晶體構造 33
4.3.1 EDS半定量成分分析 33
4.3.2 XRD繞射分析 34
4.3.3 XRD之Sherrer equation計算晶粒大小 35
4.3.4微柱內部構造之組成分佈 36
4.4奈米壓痕硬度測試 37
4.5 COMSOL模擬結果 38
4.6微柱析鍍之電流測量與其析鍍電流效率之計算 39
4.7微電鍍機制之電化學基礎 41
4.7.1陰極極化檢測結果 42
4.7.2 EIS檢測 44
4.8葡萄糖感測結果 44
伍、討論 46
5.1 鍍液pH值、電鍍電壓對微柱形貌與組成之關係 46
5.1.1 鍍液中pH值對銅螯合物物種之影響 46
5.1.2以陰極極化曲線探討電壓對微柱之組成、形貌的影響 47
5.1.3 以EIS配合陰極極化探討合金電鍍之機理 48
5.2 微柱之結構與組成對機械性質之關係 48
5.3 微柱之柱徑及內部組成分佈受電鍍電場及鍍浴中螯合物之影響 50
5.4 螯合物對析鍍電流及電鍍效率之影響 52
5.5葡萄糖感測之靈敏度受微柱組成之影響 53
陸、結論與未來展望 56
6.1 結論 56
6.2未來展望 58
參考文獻 59
參考文獻 顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2015.
[2] 陳譽升, "鎳微柱電鍍受鍍浴黏度與電阻率之影響," 博士, 機械工程研究所, 國立中央大學, 桃園縣, 2011.
[3] 張翔, "銅鎳合金微結構之微電鍍研究," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2018.
[4] 羅元成, "微米尺寸銅鎳合金電阻材料之電鍍與特性研究," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2019.
[5] 林佳政, "電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2019.
[6] X. Guan, "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究," 碩士, 機械工程學系, 國立中央大學, 桃園縣, 2019.
[7] R. Qiu, X. L. Zhang, R. Qiao, Y. Li, Y. I. Kim, and Y. S. Kang, "CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor," Chemistry of materials, vol. 19, no. 17, pp. 4174-4180, 2007.
[8] A. Brenner, Electrodeposition of alloys: principles and practice. Elsevier, 2013.
[9] F. A. Lowenheim and J. Davis, "Modern electroplating," Journal of The Electrochemical Society, vol. 121, no. 12, p. 397C, 1974.
[10] L. C. Melo, P. de Lima-Neto, and A. N. Correia, "The influence of citrate and tartrate on the electrodeposition and surface morphology of Cu–Ni layers," Journal of Applied Electrochemistry, vol. 41, no. 4, pp. 415-422, 2011.
[11] I. Mizushima, M. Chikazawa, and T. Watanabe, "Microstructure of Electrodeposited Cu‐Ni Binary Alloy Films," Journal of the Electrochemical Society, vol. 143, no. 6, p. 1978, 1996.
[12] S. Wang et al., "Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid," Applied Surface Science, vol. 288, pp. 530-536, 2014.
[13] R. Y. Ying, P. K. Ng, Z. Mao, and R. E. White, "Electrodeposition of Copper‐Nickel Alloys from Citrate Solutions on a Rotating Disk Electrode: II. Mathematical Modeling," Journal of the Electrochemical Society, vol. 135, no. 12, p. 2964, 1988.
[14] A. Rashidi and A. Amadeh, "The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings," Surface and Coatings Technology, vol. 204, no. 3, pp. 353-358, 2009.
[15] Y. Li, J. Yao, and X. Huang, "Effect of Saccharin on the process and properties of nickel electrodeposition from sulfate electrolyte," Int. J. Metall. Mater. Eng, vol. 2, p. 123, 2016.
[16] T. Green, A. Russell, and S. Roy, "The Development of a Stable Citrate Electrolyte for the Electrodeposition of Copper‐Nickel Alloys," Journal of the Electrochemical Society, vol. 145, no. 3, p. 875, 1998.
[17] S. Rode, C. Henninot, C. Vallières, and M. Matlosz, "Complexation chemistry in copper plating from citrate baths," Journal of the Electrochemical Society, vol. 151, no. 6, p. C405, 2004.
[18] R. Oriňáková, A. Turoňová, D. Kladeková, M. Gálová, and R. M. Smith, "Recent developments in the electrodeposition of nickel and some nickel-based alloys," Journal of Applied Electrochemistry, vol. 36, no. 9, pp. 957-972, 2006.
[19] M. Alper, H. Kockar, M. Safak, and M. C. Baykul, "Comparison of Ni–Cu alloy films electrodeposited at low and high pH levels," Journal of Alloys and Compounds, vol. 453, no. 1-2, pp. 15-19, 2008.
[20] M. Haciismailoglu and M. Alper, "Effect of electrolyte pH and Cu concentration on microstructure of electrodeposited Ni–Cu alloy films," Surface and Coatings Technology, vol. 206, no. 6, pp. 1430-1438, 2011.
[21] S. Mohan and N. Rajasekaran, "Influence of electrolyte pH on composition, corrosion properties and surface morphology of electrodeposited Cu–Ni alloy," Surface engineering, vol. 27, no. 7, pp. 519-523, 2011.
[22] J. M. Lee, K. M. Bae, K. K. Jung, J. H. Jeong, and J. S. Ko, "Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces," Applied surface science, vol. 289, pp. 14-20, 2014.
[23] J. D. Madden and I. W. Hunter, "Three-dimensional microfabrication by localized electrochemical deposition," Journal of microelectromechanical systems, vol. 5, no. 1, pp. 24-32, 1996.
[24] E. El-Giar and D. Thomson, "Localized electrochemical plating of interconnectors for microelectronics," in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, 1997, pp. 327-332: IEEE.
[25] R. Said, "Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling," Nanotechnology, vol. 14, no. 5, p. 523, 2003.
[26] S. Yeo and J. Choo, "Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition," Journal of micromechanics and microengineering, vol. 11, no. 5, p. 435, 2001.
[27] S. Yeo, J. Choo, and K. Sim, "On the effects of ultrasonic vibrations on localized electrochemical deposition," Journal of micromechanics and microengineering, vol. 12, no. 3, p. 271, 2002.
[28] S. Seol et al., "Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 7, no. 9, p. C95, 2004.
[29] S. Seol, J. Kim, J. Je, Y. Hwu, and G. Margaritondo, "Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 10, no. 5, p. C44, 2007.
[30] C. Lin, C. Lee, J. Yang, and Y. Huang, "Improved copper microcolumn fabricated by localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 8, no. 9, p. C125, 2005.
[31] C.-Y. Lee, C.-S. Lin, and B.-R. Lin, "Localized electrochemical deposition process improvement by using different anodes and deposition directions," Journal of Micromechanics and Microengineering, vol. 18, no. 10, p. 105008, 2008.
[32] 陳承志, "銅基材上之單軸微電析鎳製程研究," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 1999.
[33] 游絢博, "陽極單軸間歇運動下之直流、脈衝微電析鎳," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2000.
[34] 游睿為, "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2001.
[35] 葉柏青, "微陽極引導電鍍與監測," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2003.
[36] 張庭綱, "微陽極導引電鍍法製作微銅柱及銅柵欄之研究," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2004.
[37] J. Lin et al., "Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating," Journal of Micromechanics and Microengineering, vol. 15, no. 12, p. 2405, 2005.
[38] 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金微柱," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2005.
[39] J. Yang, J. Lin, T. Chang, X. You, and S. Jiang, "Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process," Journal of Micromechanics and Microengineering, vol. 19, no. 2, p. 025015, 2009.
[40] J. Lin, J. Yang, T. Chang, and S. Jiang, "On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating," Electrochimica Acta, vol. 54, no. 24, pp. 5703-5708, 2009.
[41] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, and Y.-J. Ciou, "The Development of a Real-Time Image Guided Micro Electroplating System," Int. J. Electrochem. Sci, vol. 5, pp. 1810-1820, 2010.
[42] Y.-R. Hwang, J.-C. Lin, and T.-C. Chen, "The analysis of the deposition rate for continuous micro-anode guided electroplating process," International Journal of Electrochemical Science, vol. 7, no. 2, pp. 1359-1370, 2012.
[43] 邱永傑, "即時影像導引局部電化學沉積系統製作立 體微結構物之研究," 博士, 機械工程學系, 國立中央大學, 桃園縣, 2016.
[44] Y.-J. Ciou, Y.-R. Hwang, and J.-C. Lin, "Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing," ECS Journal of Solid State Science and Technology, vol. 3, no. 7, p. P268, 2014.
[45] 張永杰, "即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質," 碩士, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2013.
[46] I. Pötzelberger, A. I. Mardare, and A. W. Hassel, "Non-enzymatic glucose sensing on copper-nickel thin film alloy," Applied Surface Science, vol. 417, pp. 48-53, 2017.
[47] L. Zhang et al., "A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor," Nano-micro letters, vol. 10, no. 2, p. 28, 2018.
[48] A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, and J. Guan, "One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing," Applied Surface Science, vol. 402, pp. 70-77, 2017.
[49] 温雅絜, "矩陣式多陽極即時影像局部電鍍控制系統之研究," 碩士, 光機電工程研究所, 國立中央大學, 桃園縣, 2018.
指導教授 林景崎(Jing-Chie,Lin) 審核日期 2021-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明