博碩士論文 107226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.16.78.46
姓名 黃柏翔(Po-Hsiang Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 聚對苯乙烯衍生物高效率強耦合有機發光二極體之研究
(Highly efficient strongly coupled organic light-emitting diode based on poly(p-phenylene vinylene) derivative)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-27以後開放)
摘要(中) 本論文旨在研究intra-cavity pumping架構下的強耦合有機發光二極體,其中激子庫材料為高吸收J-aggregate染料分子DEDOC與腔體產生偏極子模態,並應用PPV衍生物Super Yellow作為光子源OLED的發光層來激發模態產生偏極子發光。與常規的自激發架構相比,光子源不參與偏極子模態之形成,直接激發偏極子模態,可降低自激發偏極子散射所產生的損耗,提升元件發光效率。
  實驗結果表明在此架構下,元件發光效率主要由光子源和偏極子模態的重疊程度及光子源自身的效率所影響,EL光譜的飄移則來自光子源從模態邊緣的出光,而拉比分裂的特性則主要受激子庫與腔體的耦合決定。最終偏極子元件達到1.27%的EQE以及160 meV的拉比分裂能量,並且觀察了上下支的EL出光。
摘要(英) In this thesis, the strongly coupled organic light-emitting diode based on intra-cavity pumping architecture was studied. An absorbing J-aggregate dye material DEDOC was used to interaction with cavity to generate polariton modes, and a PPV derivative Super Yellow was used as the emissive layer of the photon source for radiative pumping of emission from the polariton modes. In contrast to the conventional self-pumping architecture, the photon source did not join the generation of the polariton modes, but directly pumped the polariton modes, which could reduce the loss of polariton scattering and improve the luminescence efficiency.
Experimental results show that under this architecture, the luminescence efficiency of the device was mainly determined by the overlap between the photon source and the polariton modes and the efficiency of the photon source itself. The shift of the EL spectrum was caused by the light emitted by the photon source from the edge of the polariton modes. The characteristics of the Rabi splitting was mainly determined by the coupling between the exciton reservoir and the cavity. The polariton device achieved an EQE of 1.27% and a Rabi splitting energy of 160 meV, and the light emission of the upper and lower branches both could be observed.
關鍵字(中) ★ 偏極子
★ 強耦合
★ 高分子
關鍵字(英) ★ Polariton
★ Strong coupling
★ Polymer
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
一、緒論 1
1-1 高分子發光二極體 1
1-2 有機偏極子雷射 2
1-3 研究動機 6
二、基本原理 7
2-1 有機發光二極體理論 7
2-1-1 載子注入與傳輸 8
2-1-2 外部量子效率 9
2-2 多層膜矩陣理論 9
2-2-1 正向入射 10
2-2-2 斜向入射 12
2-2-3 非相干性之反射與穿透 13
2-2-4 導納軌跡 13
2-2-5 電場分布 15
2-3 微共振腔中之光子模態 16
2-4 微共振腔中之激子-光子強耦合 18
2-4-1 激子 18
2-4-2 耦合常數 19
2-4-3 哈密頓算符與矩陣表示法 20
三、實驗方法 23
3-1 儀器介紹 23
3-1-1 手套箱 23
3-1-2熱蒸鍍系統 24
3-1-3 原子層沉積系統 25
3-1-4 磁控濺鍍系統 26
3-1-5 旋轉塗佈機 27
3-1-6 半導體參數分析儀與光電二極體 27
3-1-7 紫外/可見/紅外光分光光譜儀 28
3-1-8 積分球光譜儀 28
3-1-9 光纖量測系統 29
3-1-10 即時多角度光譜量測系統 30
3-2 實驗步驟 32
3-2-1 溶液配置 32
3-2-2 基板清洗 33
3-2-3 元件製程 33
3-3 實驗材料 34
四、實驗結果 37
4-1 有機發光二極體 37
4-1-1 PPV衍生物發光層Super Yellow 38
4-1-2 PEI對元件表現之影響 38
4-1-3 Au陰極OLED 40
4-2 有機偏極子元件 42
4-2-1 金屬膜高反射鏡 43
4-2-2 高吸收J-aggregate染料分子DEDOC激子庫 44
4-2-3 偏極子元件之光電特性 45
五、結論與未來展望 50
參考文獻 51
參考文獻 [1] R. Partridge, "Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations," Polymer, vol. 24, no. 6, pp. 733-738, 1983.
[2] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[3] D. Baigent, R. Marks, N. Greenham, R. Friend, S. Moratti, and A. Holmes, "Conjugated polymer light‐emitting diodes on silicon substrates," Applied physics letters, vol. 65, no. 21, pp. 2636-2638, 1994.
[4] K. Morii et al., "Encapsulation-free hybrid organic-inorganic light-emitting diodes," Applied Physics Letters, vol. 89, no. 18, p. 183510, 2006.
[5] H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, "Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode," Applied Physics Letters, vol. 91, no. 22, p. 223501, 2007.
[6] Y. Zhou et al., "A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics," Science, vol. 336, no. 6079, pp. 327-332, 2012, doi: 10.1126/science.1218829.
[7] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of Modern Physics, vol. 82, no. 2, p. 1489, 2010.
[8] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[9] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, no. 23, p. 3314, 1992.
[10] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, no. 6697, pp. 53-55, 1998.
[11] S. Kéna-Cohen and S. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, no. 6, p. 371, 2010.
[12] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, no. 12, p. 121303, 2013.
[13] D. Comoretto, Organic and hybrid photonic crystals. Springer, 2015.
[14] G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, "Lasing through a strongly-coupled mode by intra-cavity pumping," Opt. Express, vol. 21, no. 10, pp. 12122-12128, 2013.
[15] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, no. 3, p. 033305, 2010.
[16] 郑敏, 白凤莲, and 朱道本, "聚 (对苯撑乙烯) 发光材料," 1997.
[17] H. Lee et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, no. 4, p. 279, 2008.
[18] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, no. 25, p. 967, 1965.
[19] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, no. 1-3, pp. 23-29, 1994.
[20] 林煒紘, "超強耦合高分子發光二極體之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/49acd6
[21] 邱耀斌, "聚合物共混層發光二極體應用於電激發偏極子元件之研究," 碩士論文, 照明與顯示科技研究所, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/9vb6s2
[22] R. Holmes and S. Forrest, "Strong exciton–photon coupling in organic materials," Organic Electronics, vol. 8, no. 2-3, pp. 77-93, 2007.
[23] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[24] M. Fox, Quantum optics: an introduction. OUP Oxford, 2006.
[25] J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, "Solid state cavity QED: Strong coupling in organic thin films," Organic Electronics, vol. 8, no. 2-3, pp. 94-113, 2007.
[26] 林聖寰, "磷光材料應用於電激發有機偏極子元件之研究," 碩士論文, 照明與顯示科技研究所, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/637qgj
[27] 李威憲, "射頻磁控濺鍍沉積氧化鋅鎵透明導電膜於可撓性塑膠基板之研究," 臺灣師範大學工業教育學系學位論文, pp. 1-68, 2011.
[28] 中央大學薄膜技術中心. "::中央大學薄膜技術中心::儀器設備." http://tftc.ncu.edu.tw/Equip (accessed.
[29] K. Technology. "B1500A 半導體元件參數分析儀/半導體特性分析系統主機." https://www.keysight.com/zh-TW/pd-582565-pn-B1500A/semiconductor-device-analyzer (accessed.
[30] K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, "In vitro and in vivo evaluation of SU-8 biocompatibility," Materials Science and Engineering: C, vol. 33, no. 7, pp. 4453-4459, 2013/10/01/ 2013, doi: https://doi.org/10.1016/j.msec.2013.07.001.
[31] S. Gambino, A. K. Bansal, and I. D. W. Samuel, "Photophysical and charge-transporting properties of the copolymer SuperYellow," Organic Electronics, vol. 14, no. 8, pp. 1980-1987, 2013/08/01/ 2013, doi: https://doi.org/10.1016/j.orgel.2013.03.038.
[32] S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, "Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers," Advanced Materials, vol. 26, no. 17, pp. 2750-2754, 2014, doi: https://doi.org/10.1002/adma.201304666.
[33] S. Burns, J. MacLeod, T. Trang Do, P. Sonar, and S. D. Yambem, "Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs," Scientific Reports, vol. 7, no. 1, p. 40805, 2017/01/20 2017, doi: 10.1038/srep40805.
[34] H. Lee, I. Park, J. Kwak, D. Y. Yoon, and C. Lee, "Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles," Applied Physics Letters, vol. 96, no. 15, p. 153306, 2010, doi: 10.1063/1.3400224.
[35] P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, "A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer," Organic Electronics, vol. 11, no. 8, pp. 1419-1422, 2010/08/01/ 2010, doi: https://doi.org/10.1016/j.orgel.2010.06.002.
[36] T. Lanz, E. M. Lindh, and L. Edman, "On the Asymmetric Evolution of the Optical Properties of a Conjugated Polymer during Electrochemical p-and n-type Doping," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4706-4715, 2017.
[37] C. Amruth, M. Z. Szymański, B. Łuszczyńska, and J. Ulański, "Inkjet printing of super Yellow: Ink Formulation, Film optimization, oLeDs Fabrication, and transient electroluminescence," Scientific reports, vol. 9, no. 1, pp. 1-10, 2019.
[38] Y.-S. Liu, S. Guo, F.-S. Yi, J. Feng, and H.-B. Sun, "Highly flexible organic-inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode," Opt. Lett., vol. 43, no. 22, pp. 5524-5527, 2018/11/15 2018, doi: 10.1364/OL.43.005524.
[39] 张立国, 陈迪, 杨帆, and 李以贵, "SU-8胶光刻工艺研究," Optics and Precision Engineering, vol. 10, no. 3, pp. 266-270, 2002. [Online]. Available: http://www.opticsjournal.net/Articles/Abstract?aid=OJ070918002169IeLhOk.
[40] 莊勝雄, 游士諄, 林明俊, and 周祖亮, "SU-8 光阻在矽晶圓基材上製作微流道面板之研究," 南亞學報, vol. 26, pp. 23-36, 2006.
[41] K. A. Materials. "SU-8 2000 Data Sheet (2000.5–2015)." https://kayakuam.com/wp-content/uploads/2019/09/SU-82000DataSheet2000_5thru2015Ver4-2.pdf (accessed.
[42] 李正中, 薄膜光學與鍍膜技術(第八版). 新北市: 藝軒圖書出版社, 2016.
[43] M. Corp. "Reflectance in Thin Films." https://materion.com/-/media/files/advanced-materials-group/me/technicalpapers/reflectance-in-thin-films_all.pdf (accessed.
[44] 陳頤, "即時性多角度光譜儀系統 之校正與應用," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/2a84c5
[45] J.-F. Chang et al., "Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture," Opt. Express, vol. 28, no. 26, pp. 39781-39789, 2020/12/21 2020, doi: 10.1364/OE.410831.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明