博碩士論文 107328603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.116.118.87
姓名 烏薩馬(Muhammad Usama Arshad)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
(Fluorinated Graphene as Filler in Polymeric Nanocomposite for Enhancing Anti-corrosion Performance)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 腐蝕是導致金屬材料劣化的關鍵問題,它的影響層面包含基礎設施、環境保護和電子產品
等多領域的可靠性和安全性。過去的研究已經有許多防腐策略被提出,而其中以無機奈米
材料為填料的奈米高分子複合材料被認為是一極具潛力的方法。近期,以石墨烯和二維材
料為填充劑的奈米複合材料被認為是克服這一問題的理想策略,主要是石墨烯對水氧分子
的阻隔性。然而,石墨烯本質上是導電的,當將其直接塗覆在金屬上或在聚合物複合塗層
中超過一定的負載閾值的填料時,它會促進電偶腐蝕發生,從而導致更嚴重的腐蝕。
近期研究可以通過填料的選擇來解決此問題,選擇填料具有高的電絕緣特性、奈米片結構
以及與高分子聚合物基體的高分散性/相容性,並具有高的熱/時效穩定性,藉以形成抵抗
氣體或液體滲透的超長擴散路徑。因此在本工作中,我們選擇使用氟化的電化學剝離石墨
烯(Fluorinated electrochemically exfoliated graphene, F-ECG)得到氟化石墨烯(FG)來解決了這
些問題。
研究結果顯示,作為填料的氟化石墨烯(FG)在環氧樹脂中的負載量僅為 1 wt.%,可以
達到極低的腐蝕率(最低腐蝕率(corrosion rate, CR)=7.83×10-8 mm/year;最低電流密度=
3.37×10-12 A cm-2; 平均腐蝕率 = 9.4×10-7 mm/year; 平均電流密度 = 4.1×10-2 nA cm-2 。 CR 可通
過增加填料(FG)的含量而逐步遞減,這證明了填料的有效分散和優異的的擴散阻障,
因此增加了腐蝕性介質從陰極滲透到陽極的超長擴散路徑。由於電偶腐蝕的減少和活性腐
蝕物質(ACS)的極低擴散係數,獨特的 FG 優於過去文獻中以石墨烯及 BN 等相似的二
維材料作為複合材料的填充物。同時,為了實際應用,我們展示了軟性印刷電路板(PCB)
iii

藉由 FG-環氧複合塗層,具有優異的抗蝕性能,此外,由於 FG 兼具高電絕緣性、疏水性
和崩潰電壓,因此進一步防止了短路的風險,能使其在惡劣環境下,電子設備能具有高的
可靠度。這項工作提供一種新的防腐蝕技術,並為探索高阻水阻氣的複合材料提供了一種
新的研究策略。
摘要(英) Corrosion, an issue that leads to the fracture of metal materials, which affect the reliability and
safety of versatile fields such as infrastructure, environmental protection, and electronics. Many
strategies of anti-corrosion have been proposed, while the polymer nanocomposite with inorganic
materials as filler was been regarded as a more feasible route. Currently, the polymer
nanocomposite with graphene and 2D materials as fillers are considered an ideal strategy to
overcome this issue since graphene is highly impermeable to molecules; however, graphene is
essentially electrically conductive, when it was coated directly on metal or been used above a
certain loading threshold as filler in a polymer composite coating, it promotes the galvanic
corrosion leading to more acute corrosion.
This problem can be solved by choosing a filler that reveals electrical insulating property together
with a nano-sheet structure and high dispersibility/compatibility with the polymer matrix as well
as the high thermal/long-term stability to create an elongated diffusion path against the gas or
liquid permeation. Here, the fluorinated graphene (FG), obtained by fluorination of the
electrochemically exfoliated graphene (F-ECG) solves these issues.
As, we have shown that the fluorinated-graphene (FG) flakes as filler with only 1 wt.% loading in
the epoxy matrix, allows achieving a leading value among the reported literature on corrosion
performance average corrosion rate (CR) = 9.4×10-7 mm/year; current = 4.110-2 nA cm-2 (lowest
corrosion rate (CR) = 7.8310-8 mm/year; current = 3.37 10-12 A cm-2). The CR decreases
monotonically by increasing the filler (FG) loading, demonstrating the effective dispersion of filler
and outstanding diffusion barrier that increases the ultra-long diffusion path for corrosive media
penetration from cathode to anode. The FG was found to be a unique and ideal filler outperforming
v

other reported graphene- and BN- related 2D materials owing to the diminishment of galvanic
corrosion and the extremely lower diffusion coefficient of active corrosion species (ACS).
Meanwhile, for practical application, the FG-epoxy composite coating on flexible printed circuit
board (PCB) was proved for achieving superior corrosion inhibition while preventing the risk of
electrical short circuit due to the high electrical insulating, hydrophobic nature, and breakdown
voltage of FG, making it durable passivation on electronic devices under harsh environment. This
work shows a break-through in anti-corrosion technology and provides a novel strategy in
exploring extremely impermeable composites.
關鍵字(中) ★ Fluorinated graphene
★ electrochemically exfoliated graphene (ECG)
★ galvanic corrosion
★ conformal coated printed circuit board (PCB)
★ diffusion coefficient
★ hydrophobicity
★ nanocomposite
關鍵字(英) ★ Fluorinated graphene
★ electrochemically exfoliated graphene (ECG)
★ galvanic corrosion
★ conformal coated printed circuit board (PCB)
★ diffusion coefficient
★ hydrophobicity
★ nanocomposite
論文目次 摘要 ii
Abstract iv
List of Figures viii
List of Tables x
1 INTRODUCTION 1
1.1 Graphene/polymeric nanocomposite as an anticorrosion 1
2 MOTIVATION 4
3 METHODOLOGY 6
3.1 Experimental flow chart 6
3.2 Synthesis of Electrochemically exfoliated graphene (ECG) 6
3.3 Synthesis of Fluorinated electrochemically exfoliated graphene (F-ECG) 7
3.4 Synthesis of Epoxy–FG (EP-x-FG, x = 0.25, 0.5, 0.75 and 1.0) nanocomposite 7
3.5 Synthesis of Epoxy–ECG (EP-x-ECG, x = 0.25, 0.5, 0.75 and 1.0) nanocomposite 8
3.6 Coating the nanocomposite on a metallic substrate 8
3.7 Material characterizations 9
3.8 Electrochemical characterization 9
4 RESULTS AND DISCUSSIONS 12
4.1 Hydrophobicity and electrical resistance 12
4.1.1 Contact angle 12
4.1.2 Sheet resistance 13
4.2 Morphology 14
4.2.1 Scanning electron microscopy (SEM) 14
4.2.2 High-resolution transmission electron microscope (HRTEM) 17
4.2.3 Atomic force microscopy (AFM) 17
4.3 Bonding 18
4.3.1 Raman spectra 18
4.3.2 X-ray photoelectron spectroscopy (XPS) 19
4.4 Thermal analysis 23
4.4.1 TGA 23
4.5 Anticorrosion measurements 24
4.5.1 Electrochemical measurements 24
4.5.2 Salt immersion testing 33
4.5.3 Printed circuit board (PCB) 34
4.5.4 Galvanic corrosion mechanism by FG-x-EP 37
5 CONCLUSIONS 39
REFERENCES 41
參考文獻 1. R. W. Revie and H. H. Uhlig, <Corrosion and corrosion control an introduction to
corrosion science and engineering>, John Wiley & Sons, Inc., Hoboken New Jersey,
Canada, fourth edition edn., 2008.
2. J. Jiang, H.-y. Chu, Y. Liu, D. Wang, D. Guo and W. Sun, RSC Advances, 2018, 8, 16626
16635.
3. T. H. Randle, J. Chem. Edu., 1994, 71, 261-265.
4. S. Weng, Y. Huang, F. Xuan and F. Yang, RSC Advances, 2018, 8, 3399-3409.
5. C. Cui, A. T. O. Lim and J. Huang, Nat. Nanotechnol., 2017, 12, 834-835.
6. F. Mansfeld, Corrosion, 1971, 27, 436–442.
7. X. G. Zhang, Uhlig′s Corrosion Handbook Wiley, New Jersey, 2011
8. F. Perreault, A. Fonseca de Faria and M. Elimelech, Chem Soc Rev, 2015, 44, 5861-5896.
9. S. C. O’Hern, C. A. Stewart, M. S. H. Boutilier, J.-C. Idrobo, S. Bhaviripudi, S. K. Das, J.
Kong, T. Laoui, M. Atieh and a. R. Karnik, ACS Nano, 2012, 6.
10. M. Fujihara, R. Inoue, R. Kurita, T. Taniuchi, Y. Motoyui, S. Shin, F. Komori, Y. Maniwa,
H. Shinohara and Y. Miyata, ACS Nano, 2015, 9.
11. J. Lei, Y. Hu, Z. Liu, G. J. Cheng and K. Zhao, ACS Appl Mater Interfaces, 2017, 9, 11902
11908.
12. W. Sun, L. Wang, T. Wu, M. Wang, Z. Yang, Y. Pan and G. Liu, Chemistry of Materials,
2015, 27, 2367-2373.
13. R. D. Davidson, Y. Cubides, C. Fincher, P. Stein, C. McLain, B.-X. Xu, M. Pharr, H.
Castaneda and S. Banerjee, ACS Applied Nano Materials, 2019, 2, 3100-3116.
42

14. D. Dutta, A. N. F. Ganda, J. K. Chih, C. C. Huang, C. J. Tseng and C. Y. Su, Nanoscale,
2018, 10, 12612-12624.
15. M. Cui, S. Ren, S. Qin, Q. Xue, H. Zhao and L. Wang, RSC Advances, 2017, 7, 44043
44053.
16. J. Joy, E. George, S. Thomas and S. Anas, New Journal of Chemistry, 2020, 44, 4494-4503.
17. J. Ding, H. Zhao, D. Ji, B. Xu, X. Zhao, Z. Wang, D. Wang, Q. Zhou and H. Yu, Journal
of Materials Chemistry A, 2019, 7, 2864-2874.
18. L. Shen, Y. Zhao, Y. Wang, R. Song, Q. Yao, S. Chen and Y. Chai, J. Mater. Chem. A,
2016, 4, 5044-5050.
19. J. G. Um, Y.-S. Jun, H. Alhumade, H. Krithivasan, G. Lui and A. Yu, RSC Advances, 2018,
8, 17091-17100.
20. Z. Yang, L. Wang, W. Sun, S. Li, T. Zhu, W. Liu and G. Liu, Applied Surface Science,
2017, 401, 146-155.
21. C. Xia, D. Cai, J. Tan, K. Li, Y. Qiao and X. Liu, ACS Biomaterials Science & Engineering,
2018, 4, 3185-3193.
22. S. Zhou, Y. Wu, W. Zhao, J. Yu, F. Jiang, Y. Wu and L. Ma, Materials & Design, 2019,
169, 107694.
23. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov and L.-J. Li, ACS Nano, 2011,
5, 2332–2339.
24. C. H. Chen, S. W. Yang, M. C. Chuang, W. Y. Woon and C. Y. Su, Nanoscale, 2015, 7,
15362-15373.
25. D. D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril and M. Otyepka, Appl. Mater.
Today, 2017, 9, 60-70.
43

26. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov and C.
Casiraghi, Nano Lett, 2012, 12, 3925-3930.
27. Q. Tang, Z. Zhou and Z. Chen, Nanoscale, 2013, 5, 4541-4583.
28. B. Wang, J. Wang and J. Zhu, ACS Nano, 2014, 8, 1862–1870.
29. V. Mišković-Stanković, I. Jevremović, I. Jung and K. Rhee, Carbon, 2014, 75, 335-344.
30. N. T. Kirkland, T. Schiller, N. Medhekar and N. Birbilis, Corrosion Science, 2012, 56, 1
4.
31. R. K. Singh Raman, P. Chakraborty Banerjee, D. E. Lobo, H. Gullapalli, M. Sumandasa,
A. Kumar, L. Choudhary, R. Tkacz, P. M. Ajayan and M. Majumder, Carbon, 2012, 50,
4040-4045.
32. Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. Lv, X. Ran, Y. Pan and Z. Luo, Surface and
Coatings Technology, 2015, 276, 471-478.
33. S. Liu, L. Gu, H. Zhao, J. Chen and H. Yu, Journal of Materials Science & Technology,
2016, 32, 425-431.
34. L. Gu, S. Liu, H. Zhao and H. Yu, ACS Appl Mater Interfaces, 2015, 7, 17641-17648.
35. K.-C. Chang, M.-H. Hsu, H.-I. Lu, M.-C. Lai, P.-J. Liu, C.-H. Hsu, W.-F. Ji, T.-L. Chuang,
Y. Wei, J.-M. Yeh and W.-R. Liu, Carbon, 2014, 66, 144-153.
36. S. Pourhashem, M. R. Vaezi, A. Rashidi and M. R. Bagherzadeh, Corrosion Science, 2017,
115, 78-92.
37. X. Li, P. Bandyopadhyay, T. Kshetri, N. H. Kim and J. H. Lee, Journal of Materials
Chemistry A, 2018, 6, 21501-21515.
38. T.-C. Huang, G.-H. Lai, C.-E. Li, M.-H. Tsai, P.-Y. Wan, Y.-H. Chung and M.-H. Lin,
RSC Advances, 2017, 7, 9908-9913.
44

39. J. Ding, H. Zhao, B. Xu, X. Zhao, S. Su and H. Yu, ACS Sustainable Chemistry &
Engineering, 2019, 7, 10900-10911.
40. S. ArunKumar, V. Jegathish, R. Soundharya, M. JesyAlka, C. Arul, S. Sathyanarayanan
and S. Mayavan, RSC Advances, 2017, 7, 17332-17335.
指導教授 蘇清源(Ching Yuan Su) 審核日期 2020-12-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明