博碩士論文 103690606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.16.50.94
姓名 庫馬(Utpal Kumar)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 地球物理資料分析在地震學與測地學的應用
(Seismological and Geodetic Applications of Geophysical Data Analysis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地球物理觀測涵蓋廣泛的時間尺度範圍,從地震所產生能量的瞬間變化到地質時間尺 度的板塊變形。本論文呈現探索不同時間尺度工具、複雜模型、資料迭代分析過程在 地震學與大地測量學的應用。

首先我們探索地震資料應用的過程,並使用三個研究結果來闡述與反演移動振源與地 球構造的特徵性質。在第一項研究中,透過地震波和聲下波陣列數據,我們分辨出 2013 年台灣北海岸淡水鎮的神秘爆炸聲源為流星衝擊波信號,並應用基因演算法反演 隕石軌跡的最佳解。在第二項研究中,針對印度最西部省份古吉拉特邦的雷利波相速 度在 20 到 90 秒的寬頻範圍內進行相速度異常圖的分析,我們使用計算所得測站間的 頻散曲線,將每個周期獨立地反演成高解析度均向性與隨著方位角變化的非均向性相 速度圖,結果與已知同區域的地質構造特徵相當吻合。在第三項研究中,我們開發了 一個全自動程式庫進行接收函數與剪力波分離的計算,唯一手動部分是使用者提供輸 入參數。此程式庫從全球可用的資料中心搜尋與下載資料並分別計算接收函數與剪力 波分離的結果,產生具出版品質的圖集。此程式庫已應用在 USArray 資料進行接收函 數分析與德國的測站網資料進行剪力波分離測量。

最後,我們對連續全球定位系統資料(CGPS)中的高振幅、長周期、空間相干共模誤差 (CME)的起源進行研究,分析台灣 47 個 GPS 測站所記錄到十年的日地殼變形資料來了 解 CME 的起源,其季節性證明了氣象起源。使用經驗正交函數(EOFs)分析提取 CME,發現 CME 與時域和譜域中的大氣質量負荷位移顯著相關。
摘要(英) Geophysical observations, ranging from transient earthquake oscillations to tectonic deformations at geological scales, lie in a broad temporal spectrum. The work presented in this dissertation explores the asynchronous tools and models for the complex and iterative data analysis procedures applied in the seismology and geodesy.

First, we explore the procedures applied to the seismic data and illustrate using three studies to characterize and invert for the moving source and the Earth structure. In the first study, the mysterious explosion sounds heard in the coastal town of Tamsui in Taiwan in 2013 was identified in the seismic and infrasound array data and characterized as a meteor shockwave signal and the trajectory of the meteor is inverted using Genetic Algorithm optimization scheme. In the second study, Rayleigh wave phase velocity anomaly maps of Gujarat, a westernmost province in India, is explored in a broad spectrum of 20-90s. The computed inter-station dispersion curves are inverted for high-resolution isotropic and azimuthally anisotropic phase velocity maps at each period independently, coinciding well with the known geological features in the region. In the third study, a fully automated package is developed (in Python) to conduct the Receiver Functions (RF) and Shear-wave Splitting (SWS) computation for the user-provided input parameters (the only manual part). The dataset is automatically searched and downloaded from all the available data centers around the world and is processed, and computed for RF and SWS results independently along with high-resolution figures. The package is applied to the USArray data for the RF analysis and the networks around Germany for SWS measurements.

Finally, a study is conducted to understand the origin of the high amplitude, long period, and spatially coherent common-mode error (CME) in continuous GPS (CGPS) data. Ten years of daily crustal deformations recorded at 47 CGPS stations in Taiwan are analyzed to understand the origin of CME whose seasonality evidences meteorological origin. CME is extracted using the Empirical Orthogonal Functions (EOFs) analysis and found to be significantly correlated with the atmospheric mass loading displacements in both temporal and spectral domains.
關鍵字(中) ★ 地震学
★ 大地测量学
★ 流星冲击波
★ 表面波层析成像
★ 共模误差
★ STADIUMpy
關鍵字(英) ★ Seismology
★ Geodesy
★ Meteor Shockwave
★ Surface wave Tomography
★ Common-mode Error
★ STADIUMpy
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgements iii
List of Figures x
List of Tables xiv
1 Introduction 1
1.1 Motivation 1
1.2 Structure of the Thesis 2
2 Methods and Tools 5
2.1 Least-squares method 5
2.1.1 Earthquake location in homogeneous medium 5
2.1.2 Monte Carlo Methods 11
2.1.3 Genetic Algorithm 13
2.2 Wavelet Transform Vs Fourier Transform 17
2.3 Principal Component Analysis (PCA) and Empirical Orthogonal Functions (EOFs) analysis 19
2.3.1 PCA analysis 19
2.3.2 Empirical Orthogonal Functions analysis 21
2.3.3 Formulation and computation of EOFs 22
2.3.4 EOF analysis of Meinong Earthquake 23
3 A meteor shockwave event recorded at seismic and infrasound stations in northern Taiwan 26
Abstract 26
3.1 Background and Significance 26
3.2 Physics of shockwave production and subsequent ground coupling 27
3.3 Data 29
3.4 Methods 31
3.4.1 Time-frequency analysis and event recognition 31
3.4.2 Inversion for trajectory parameters 34
3.4.3 Implementation of Genetic Algorithm (GA) 35
3.5 Results 36
3.6 Discussion 38
3.7 Conclusions 40
4 Anisotropic Rayleigh Wave Phase Velocity Maps of Gujarat, India 41
4.1 Introduction 41
4.1.1 Surface waves and dispersion 43
4.1.2 Phase and group velocity dispersion 44
4.2 Seismic Data and Methodology 46
4.3 Seismic Stations and Selected Earthquakes 46
4.4 Phase Velocity Dispersion Curves 47
4.5 Inversion for Rayleigh Wave Phase Velocity Maps 53
4.5.1 Estimating the optimum value of damping and smoothing constraints 53
4.5.2 Resolution tests 56
4.6 Results 56
4.6.1 Isotropic Variations 57
4.6.2 The 2ψ Anisotropic Variations 59
4.7 Discussions 60
4.8 Conclusions 63
5 STADIUM-Py: A Python-based automated software package for receiver function and shear-wave splitting analyses 64
Abstract 64
5.1 Introduction 64
5.2 Methods 66
5.2.1 Waveforms and metadata retrieval 68
5.2.2 Receiver functions method 69
5.2.3 Shear-wave splitting (SWS) 73
5.3 Results 78
5.3.1 RFs for USArray stations 78
5.3.2 SWS measurements at stations around Germany 84
5.4 Discussion and Conclusions 90
6 What Causes the Common-Mode Error in Array GPS Displacement Fields: Case Study for Taiwan in Relation to Atmospheric Mass Loading 93
Abstract 93
6.1 Introduction 93
6.2 Data Preparation 96
6.2.1 Continuous GPS Data 96
6.2.2 CME and the seasonality of the GPS residuals 100
6.2.3 Atmospheric mass loading (AML) data 104
6.3 Results 105
6.3.1 EOF of GPS residuals to extract CME 105
6.3.2 Comparison of CME with the AML residuals 108
6.4 Discussions 118
6.5 Conclusions 122
7 Conclusions 123
7.1 Summary 123
7.2 Future works 125
8 Appendix 127
8.1 Earthquake location problem 127
8.1.1 Generalized inverse solution (Section 2.1.1) 127
8.1.2 Solution using Monte Carlo method (2.1.2) 128
8.1.3 Solution using Genetic Algorithm (2.1.3) 129
8.2 Shear wave splitting measurements around Germany (5.3.2) 132
8.3 Modeling continuous GPS position time series 138
8.3.1 Interpolate time series to obtain daily samplings 138
8.3.2 Least squares fit to the CGPS data 139
8.4 STADIUM-Py 142
8.4.1 STADIUM-Py User Instructions 142
8.4.2 Some other auto-generated results 145
Bibliography 148
參考文獻 Abdi, H. & Williams, L.J., 2010. Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), pp.433–459.
Ai, Y. et al., 2005. The crust and upper mantle discontinuity structure beneath Alaska inferred from receiver functions. Physics of the Earth and Planetary Interiors, 150(4), pp.339–350.
Amiri-Simkooei, A.R., 2013. On the nature of GPS draconitic year periodic pattern in multivariate position time series. Journal of Geophysical Research: Solid Earth, 118(5), pp.2500–2511.
Ammon, C.J., Randall, G.E. & Zandt, G., 1990. On the nonuniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10), pp.15303–15318.
Anon, 2007. Empirical orthogonal functions and related techniques in atmospheric science: A review. 27(9), pp.1119–1152.
Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
Barruol, G. et al., 1998. Lithospheric anisotropy beneath the Pyrenees from shear wave splitting. Journal of Geophysical Research: Solid Earth, 103(B12), pp.30039–30053.
Båth, B.M., 2012. Spectral Analysis in Geophysics, Elsevier.
Ben, M., 1975. Source parameters of the siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations.
Bettinelli, P. et al., 2008. Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth and Planetary Science Letters, 266(3-4), pp.332–344.
Beyreuther, M. et al., 2010. ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), pp.530–533.
Biggs, J., Robinson, D.P. & Dixon, T.H., 2009. The 2007 Pisco, Peru, earthquake (M8.0): seismology and geodesy. Geophysical Journal International, 176(3), pp.657–669.
Biswas, S.K., 1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135(4), pp.307–327.
Blewitt, G. & Lavallee, D., 2002. Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth, 107(B7), pp.ETG 9–1–ETG 9–11.
Blewitt, G. et al., 2013. Terrestrial reference frame NA12 for crustal deformation studies in North America. Journal of Geodynamics, 72, pp.11–24.
Bock, Y., Prawirodirdjo, L. & Melbourne, T.I., 2004. Detection of arbitrarily large dynamic ground motions with a dense high‐rate GPS network. 31(6).
Borovička, J. et al., 2003. The Morávka meteorite fall: 1. Description of the events and determination of the fireball trajectory and orbit from video records. Meteoritics & Planetary Science, 38(7), pp.975–987.
Bos, A.G. & Spakman, W., 2003. Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field. 108(B10), p.77.
Brown, P.G. et al., 2002. An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteoritics and Planetary Science, 37(5), pp.661–676.
Brown, P.G. et al., 2003. The Morávka meteorite fall: 2. Interpretation of infrasonic and seismic data. Meteoritics & Planetary Science, 38(7), pp.989–1003.
Calkins, J.A. et al., 2006. Crustal images from San Juan, Argentina, obtained using high frequency local event receiver functions. Geophysical Research Letters, 33(7).
Cane, M.A. & Zebiak, S.E., 1985. A Theory for El Niño and the Southern Oscillation. 228(4703), pp.1085–1087.
Caudron, C. et al., 2016. Infrasound and seismic detections associated with the 7 September 2015 Bangkok fireball. Geoscience Letters, 3(1), pp.26–26.
Cerny, B.A. & Kaiser, H.F., 1977. A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate behavioral research, 12(1), pp.43–47.
Chandrasekhar, D.V. & Mishra, D.C., 2002. Some geodynamic aspects of Kutch basin and seismicity: An insight from gravity studies. Current Science, 83(4), pp.492–498.
Chandrasekhar, D.V. et al., 2002. Gravity and magnetic signatures of volcanic plugs related to Deccan volcanism in Saurashtra, India and their physical and geochemical properties. Earth and Planetary Science Letters, 201(2), pp.277–292.
Chang, E.T.Y. & Chao, B.F., 2014. Analysis of coseismic deformation using EOF method on dense, continuous GPS data in Taiwan. Tectonophysics, 637(C), pp.106–115.
Chao, B.F. & Chung, C.H., 2019. On Estimating the Cross Correlation and Least Squares Fit of One Data Set to Another With Time Shift. Earth and Space Science, 6(8), pp.1409–1415.
Chao, B.F. & Eanes, R., 1995. Global gravitational changes due to atmospheric mass redistribution as observed by the Lageos nodal residual. Geophysical Journal International, 122(3), pp.755–764.
Chao, B.F. & Liau, J.R., 2019. Gravity Changes Due to Large Earthquakes Detected in GRACE Satellite Data via Empirical Orthogonal Function Analysis. Journal of Geophysical Research: Solid Earth, 124(3), pp.3024–3035.
Chao, B.F. et al., 2014. Earth′s rotation variations: A wavelet analysis. Terra Nova, 26(4), pp.260–264.
Chen, H.-Y. et al., 2013. A New Velocity Field from a Dense GPS Array in the Southernmost Longitudinal Valley, Southeastern Taiwan. 24, pp.837–862.
Ching, K.-E. et al., 2007. Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), pp.601–619.
Christensen, N.I., 1996. Poisson′s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), pp.3139–3156.
Clitheroe, G. & Van Der Hilst, R.D., 1998. Complex anisotropy in the Australian lithosphere from shear-wave splitting in broad-band SKS records. Structure and Evolution of the Australian Continent, 26, pp.73–78.
Cox, A. & Hart, R.B., 2009. Plate tectonics: how it works, John Wiley & Sons.
Crampin, S. & Chastin, S., 2003. A review of shear wave splitting in the crack-critical crust. Geophysical Journal International, 155(1), pp.221–240.
Crotwell, H.P. & Owens, T.J., 2005. Automated receiver function processing. Seismological Research Letters, 76(6), pp.702–709.
Dixit, M., Singh, A.P. & Mishra, O.P., 2017. Rayleigh wave group velocity tomography of Gujarat region, Western India and its implications to mantle dynamics. Journal of Seismology, pp.1–15.
Dixon, T.H. & Wolf, S.K., 1990. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment. 17(3), pp.203–206.
Dobslaw, H. et al., 2017. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 211(1), pp.263–269.
Dong, D. et al., 2006. Spatiotemporal filtering using principal component analysis and Karhunen‐Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth, 111(B3).
Dong, D., Fang, P., Bock, Y., Cheng, M.K. & Miyazaki, S., 2002a. Anatomy of apparent seasonal variations from GPS-derived site position time series. 107(B4), pp.ETG 9–1–ETG 9–16.
Dong, D., Fang, P., Bock, Y., Cheng, M.K. & Miyazaki, S., 2002b. Anatomy of apparent seasonal variations from GPS‐derived site position time series. Journal of Geophysical Research: Solid Earth, 107(B4), pp.ETG–9.
Dong, D., Herring, T.A. & King, R.W., 1998. Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 72(4), pp.200–214.
Dragert, H., Wang, K. & James, T.S., 2001. A Silent Slip Event on the Deeper Cascadia Subduction Interface. Science, 292(5521), pp.1525–1528.
Edwards, W.N., Eaton, D.W. & Brown, P.G., 2008. Seismic Observations of Meteors : Coupling Theory and Observations. (2007).
Eulenfeld, T., 2020. rf: Receiver function calculation in seismology. Journal of Open Source Software, 5(48), p.1808.
Evans, M.S., Kendall, J.-M. & Willemann, R.J., 2006. Automated SKSsplitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophysical Journal International, 165(3), pp.931–942.
Flesch, L.M. et al., 2005. Constraining the extent of crust--mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth and Planetary Science Letters, 238(1-2), pp.248–268.
Folk, M. et al., 2011. An overview of the HDF5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. pp. 36–47.
Franks, L.E., 1969. Signal theory.
Fukao, Y., 1984. Evidence from core-reflected shear waves for anisotropy in the Earth′s mantle. Nature, 309(5970), p.695.
Fukunaga, K. & Koontz, W.L., 1970. Application of the Karhunen-Loeve expansion to feature selection and ordering. IEEE Transactions on computers, 100(4), pp.311–318.
Fukuoka, A., 1951. The Central Meteorological Observatory, A study on 10-day forecast (A synthetic report). Geophysical Magazine, 22(3), pp.177–208.
Gao, S. et al., 1997. SKS splitting beneath continental rift zones. Journal of Geophysical Research: Solid Earth, 102(B10), pp.22781–22797.
Garnero, E.J., 2004. A new paradigm for Earth′s core-mantle boundary. Science, 304(5672), pp.834–836.
Gelchinsky, B. & Shtivelman, V., 1983. Automatic picking of first arrivals and parameterization of traveltime curves. Geophysical Prospecting, 31(6), pp.915–928.
Gentili, S. & Michelini, A., 2006. Automatic picking of P and S phases using a neural tree. Journal of Seismology, 10(1), pp.39–63.
Goldberg, D.E. & Holland, J.H., 1988. Genetic algorithms and machine learning. Machine learning, 3(2), pp.95–99.
Golub, G. & Van Loan, C., 1996. Matrix computations. Matrix, 1000(13), p.09.
Gosink, L. et al., 2006. HDF5-FastQuery: Accelerating complex queries on HDF datasets using fast bitmap indices. In 18th International Conference on Scientific and Statistical Database Management (SSDBM′06). pp. 149–158.
Granger, C.W.J. & Newbold, P., 2014. Forecasting economic time series.
Gruszczynska, M. et al., 2019. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations. In Geodynamics and Earth Tides Observations from Global to Micro Scale. Geodynamics and Earth Tides Observations from Global to Micro Scale. Cham: Birkhäuser, Cham, pp. 211–228.
Gruszczynski, M., 2016. Orthogonal transformation in extracting of common mode error from continuous GPS network. Acta Geodynamica et Geomaterialia, pp.291–298.
Gruszczynski, M., Klos, A. & Bogusz, J., 2019. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis. In C. Braitenberg, G. Rossi, & G. A. E. T. E. group, eds. Geodynamics and Earth Tides Observations from Global to Micro Scale. Geodynamics and Earth Tides Observations from Global to Micro Scale. Cham: Springer International Publishing, pp. 247–273.
Gurrola, H., Minster, J.B. & Owens, T., 1994. The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities. Geophysical Journal International, 117(2), pp.427–440.
Halliday, I., Griffin, A.A. & Blackwell, A.T., 1996. Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteoritics and Planetary Science, 31, pp.185–217.
Hatanaka, Y. et al., 2014. Calibration of antenna-radome and monument-multipath effect of GEONET—Part 2: Evaluation of the phase map by GEONET data. Earth, Planets and Space, 53(1), pp.23–30.
Heki, K. et al., 2006. Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. Journal of Geophysical Research: Solid Earth, 111(B9), p.1133.
Hill, B.D., 2011. Sequential Kaiser-meyer-olkin Procedure as an Alternative for Determining the Number of Factors in Common-factor Analysis: a Monte Carlo Simulation.
Houck, C.R., Joines, J.A. & Kay, M.G., 1996. Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems. Computers & Operations Research, 23(6), pp.587–596.
Houser, C. et al., 2008. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophysical Journal International, 174(1), pp.195–212.
Hudnut, K.W. et al., 2002. Continuous GPS Observations of Postseismic Deformation Following the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1). Bulletin of the Seismological Society of America, 92, pp.1403–1422.
Ishihara, Y. et al., 2003. The 1998 Miyako fireball′s trajectory determined from shock wave records of a dense seismic array. Earth, Planets and Space, 55(12).
Ishihara, Y. et al., 2004. The 2003 Kanto large bolide′s trajectory determined from shockwaves recorded by a seismic network and images taken by a video camera. 31(14), pp.2–5.
Jin, F.-F. & Jin, F.-F., 1997. An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model., 54(7), pp.811–829.
Johansson, J.M. et al., 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research: Solid Earth, 107(B8), pp.ETG 3–1–ETG 3–27.
John, T. & Schenk, V., 2006. Interrelations between intermediate-depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite facies pseudotachylytes. Geology, 34(7), pp.557–560.
Julià, J. et al., 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International, 143(1), pp.99–112.
Kaila, K.L. et al., 1981. Crustal structure from deep seismic soundings along the Koyna II (Kelsi-Loni) profile in the Deccan Trap area, India. Tectonophysics, 73(4), pp.365–384.
Kaila, K.L. et al., 1990. Deep seismic sounding studies in the north Cambay and Sanchor basins, India. Geophysical Journal International, 103(3), pp.621–637.
Kaneshima, S., 1990. Origin of crustal anisotropy: shear wave splitting studies in Japan. Journal of Geophysical Research: Solid Earth, 95(B7), pp.11121–11133.
Kao, H. & Jian, P.-R., 2001. Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data. Tectonophysics, 333(1-2), pp.179–198.
Kayal, J.R., 2002. The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. 29(24), pp.2152–2152.
Kennett, B. & Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), pp.429–465.
Kennett, B.L.N. & Widiyantoro, S., 1999. A low seismic wavespeed anomaly beneath northwestern India: a seismic signature of the Deccan plume? Earth and Planetary Science Letters, 165(1), pp.145–155.
Kind, R. et al., 2015. Structure of the upper mantle in the north-western and central United States from USArray S-receiver functions. Solid Earth, 6(3), pp.957–970.
Kind, R., Yuan, X. & Kumar, P., 2012. Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536, pp.25–43.
King, M.A. et al., 2010. Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-Based Geodetic Observations. Surveys in Geophysics, 31(5), pp.465–507.
Kinoshita, M., Maruyama, T. & Sagayama, T., 1999. Preliminary activity of Leonid meteor storm observed with a video camera in 1997. 26(1), pp.41–44.
Klekociuk, A.R. et al., 2005. Meteoritic dust from the atmospheric disintegration of a large meteoroid. Nature, 436(7054), pp.1132–1135.
Klos, A. et al., 2015. Error analysis for European IGS stations. Studia Geophysica et Geodaetica, 60(1), pp.17–34.
Klos, A. et al., 2019. Estimates of vertical velocity errors for IGS ITRF2014 stations by applying the improved singular spectrum analysis method and environmental loading models. In Geodynamics and Earth Tides Observations from Global to Micro Scale. Springer, pp. 229–246.
Knapmeyer-Endrun, B. et al., 2013. Tracing the influence of the Trans-European Suture Zone into the mantle transition zone. Earth and Planetary Science Letters, 363, pp.73–87.
Kumar, P. et al., 2012. USArray receiver function images of the lithosphere-asthenosphere boundary. Seismological Research Letters, 83(3), pp.486–491.
Kumar, P., Kind, R. & Yuan, X., 2010. Receiver function summation without deconvolution. Geophysical Journal International, 180(3), pp.1223–1230.
Kutz, J.N., 2013. Data-driven modeling & scientific computation: methods for complex systems & big data, Oxford University Press.
Lambeck, K., 1988. Geophysical geodesy, Clarendon Oxford.
Landisman, M., Dziewonski, A. & Satô, Y., 1969. Recent Improvements in the Analysis of Surface Wave Observations. Geophysical Journal International, 17(4), pp.369–403.
Langston, C.A., 2004. Seismic ground motions from a bolide shock wave. 109(B12), pp.B12309–B12309.
Langston, C.A., 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), pp.4749–4762.
Larson, K.M., Bodin, P. & Gomberg, J., 2003. Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake. Science, 300(5624), pp.1421–1424.
Lay, T. & Wallace, T.C., 1995. Modern global seismology, Elsevier.
Le Pichon, A. et al., 2013. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. 40(14), pp.3732–3737.
Legendre, C.P. et al., 2012. A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophysical Journal International, 191(1), pp.282–304.
Lev, E., Long, M.D. & van der Hilst, R.D., 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251(3-4), pp.293–304.
Levander, A. & Miller, M.S., 2012. Evolutionary aspects of lithosphere discontinuity structure in the western U.S. Geochemistry, Geophysics, Geosystems, 13(7).
Li, A. et al., 2002. Crust and upper mantle discontinuity structure beneath eastern North America. Journal of Geophysical Research: Solid Earth, 107(B5), pp.ESE 7–1–ESE 7–12.
Li, W., Shen, Y. & Li, B., 2015. Weighted spatiotemporal filtering using principal component analysis for analyzing regional GNSS position time series. Acta Geodaetica et Geophysica, 50(4), pp.419–436.
Lin, L.I.-K., 1989. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45(1), p.255.
Long, M.D., 2009. Complex anisotropy in D" beneath the eastern Pacific from SKS--SKKS splitting discrepancies. Earth and Planetary Science Letters, 283(1-4), pp.181–189.
Long, M.D. & van der Hilst, R.D., 2006. Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Physics of the Earth and Planetary Interiors, 155(3-4), pp.300–312.
Lorenz, E.N., 1956. Empirical orthogonal functions and statistical weather prediction.
Loveless, J.P. & Meade, B.J., 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. 115(B2).
Maguire, R., Ritsema, J. & Goes, S., 2018. Evidence of Subduction-Related Thermal and Compositional Heterogeneity Below the United States From Transition Zone Receiver Functions. Geophysical Research Letters, 45(17), pp.8913–8922.
Malet, J.P., Maquaire, O. & Calais, E., 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43(1-2), pp.33–54.
Mandal, P., 2009. Crustal shear-wave splitting in the epicentral zone of the 2001 Mw 7.7 Bhuj earthquake, Gujarat, India. Journal of Geodynamics, 47(5), pp.246–258.
Mandal, P., 2012. Passive-source seismic imaging of the crust and upper mantle beneath the 2001 M w 7.7 bhuj earthquake region, Gujarat, India. Bulletin of the Seismological Society of America, 102(1), pp.252–266.
Mandal, P., 2006. Sedimentary and crustal structure beneath Kachchh and Saurashtra regions, Gujarat, India. Physics of the Earth and Planetary Interiors, 155(3-4), pp.286–299.
Mandal, P. & Chadha, R.K., 2008. Three-dimensional velocity imaging of the Kachchh seismic zone, Gujarat, India. Tectonophysics, 452(1-4), pp.1–16.
Mandal, P. & Pandey, O.P., 2010. Relocation of aftershocks of the 2001 Bhuj earthquake: A new insight into seismotectonics of the Kachchh seismic zone, Gujarat, India. Journal of Geodynamics, 49(5), pp.254–260.
Mandal, P. & Pujol, J., 2006. Seismic imaging of the aftershock zone of the 2001 Mw 7.7 Bhuj earthquake, India. 33(5), pp.L05309–L05309.
Mandal, P. et al., 2004. Results from local earthquake velocity tomography: implications toward the source process involved in generating the 2001 Bhuj earthquake in the lower crust beneath Kachchh (India). Bulletin of the Seismological Society of America, 94(2), pp.633–649.
Mantua, N.J. & Hare, S.R., 2002. The Pacific Decadal Oscillation. Journal of Oceanography, 58, pp.35–44.
Mao, A., Harrison, C.G. & Dixon, T.H., 1999. Noise in GPS coordinate time series. 104(B2), pp.2797–2816.
Massonnet, D., Thatcher, W. & Vadon, H., 1996. Detection of postseismic fault-zone collapse following the Landers earthquake. Nature, 382(6592), pp.612–616.
Mathews, J.H., 1992. Numerical methods for mathematics, science and engineering, Prentice-Hall international.
Márquez-Azúa, B. & DeMets, C., 2003. Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico. 108(B9), pp.21,943–20.
Meier, T. et al., 2004. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophysical Journal International, 156(1), pp.45–58.
Melbourne, T.I. & Webb, F.H., 2002. Precursory transient slip during the 2001 Mw = 8.4 Peru earthquake sequence from continuous GPS. 29(21), pp.28–1–28–4.
Meltzer, A. et al., 1999. The USArray initiative. Geological Society of America TODAY, 9, pp.8–10.
Menke, W., 2018. Geophysical Data Analysis, Academic Press.
Miller, M.M. et al., 2002. Periodic Slow Earthquakes from the Cascadia Subduction Zone. Science, 295(5564), pp.2423–2423.
Mishra, O.P. & Zhao, D., 2003. Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: a fluid-driven earthquake? Earth and Planetary Science Letters, 212(3-4), pp.393–405.
Mishra, O.P. et al., 2014. An insight into crack density, saturation rate, and porosity model of the 2001 Bhuj earthquake in the stable continental region of western India. Journal of Asian Earth Sciences, 83, pp.48–59.
Mishra, O.P., Zhao, D. & Singh, D.D., 2005. Surface-wave studies beneath the Pacific Ocean. Bulletin of the Seismological Society of America, 95(6), pp.2152–2161.
Miyazaki, S. et al., 2003. An impact of estimating tropospheric delay gradients on precise positioning in the summer using the Japanese nationwide GPS array. Journal of Geophysical Research: Solid Earth, 108(B7), p.5019.
Molnar, P., 1988. Continental tectonics in the aftermath of plate tectonics. Nature, 335(6186), p.131.
Monteiller, V. & Chevrot, S., 2010. How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy. Geophysical Journal International, 82(3-4), pp.no–no.
Morlet, J. et al., 1982. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. GEOPHYSICS, 47(2), pp.203–221.
Naganjaneyulu, K., Ledo, J.J. & Queralt, P., 2010. Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications. Geologica Acta, 8(1), pp.83–97.
Nagasawa, K., 1978. An analysis of sonic boom from a Great Fireball on May 10, 1977, recorded on seismographs of volcano observations. Bull. Earthq. Res. Inst. Univ. Tokyo, 53, pp.271–280.
Nemtchinov, I.V. et al., 1997. Assessment of Kinetic Energy of Meteoroids Detected by Satellite-Based Light Sensors. Icarus, 130(2), pp.259–274.
Newman, M., Compo, G.P. & Alexander, M.A., 2003. ENSO-Forced Variability of the Pacific Decadal Oscillation. Journal of Climate, 16, pp.1–5.
Owens, T.J. et al., 2004. SOD: Standing order for data. Seismological Research Letters, 75(4), pp.515–520.
Paige, C.C. and Saunders, M.A., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1), pp.43-71.
Papoulis, A., 1977. Signal analysis, McGraw-Hill New York.
Petrov, L., 2015. The international mass loading service. In REFAG 2014. Springer, pp. 79–83.
Petrov, L. & Boy, J.P., 2004. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. Journal of Geophysical Research: Solid Earth, 109(B3), p.409.
Plenefisch, T., Klinge, K. & Kind, R., 2001. Upper mantle anisotropy at the transition zone of the Saxothuringicum and Moldanubicum in southeast Germany revealed by shear wave splitting. Geophysical Journal International, 144(2), pp.309–319.
Prawirodirdjo, L., Ben Zion, Y. & Bock, Y., 2006. Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series. Journal of Geophysical Research: Solid Earth, 111(B2), pp.n/a–n/a.
Pujol, J., Rydelek, P. & Bohlen, T., 2005a. Determination of the Trajectory of a Fireball Using Seismic Network Data. Bulletin of the Seismological Society of America, 95(4), pp.1495–1509.
Pujol, J., Rydelek, P. & Ishihara, Y., 2006. Analytical and graphical determination of the trajectory of a fireball using seismic data. Planetary and Space Science, 54(1), pp.78–86.
Ravi Kumar, M. et al., 2001. Crustal structure of the Indian Shield: New constraints from teleseismic receiver functions. 28(7), pp.1339–1342.
Reilinger, R. et al., 2006. GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. 111(B5).
Restivo, A. & Helffrich, G., 1999. Teleseismic shear wave splitting measurements in noisyenvironments. Geophysical Journal International, 137(3), pp.821–830.
ReVelle, D.O., 1976. on meteor-generated infrasound. 81(7), pp.1217–1230.
Revelle, D.O., 1997. Historical Detection of Atmospheric Impacts by Large Bolides Using Acoustic-Gravity Waves. Annals of the New York Academy of Sciences, 822(1 Near-Earth Ob), pp.284–302.
Richter, T., 2014. Temporal Variations of Crustal Properties in Northern Chile Analyzed with Receiver Functions and Passive Image Interferometry.
Rienecker, M.M. et al., 2008. The GEOS-5 Data Assimilation System: Documentation of Versions 5.0. 1, 5.1. 0, and 5.2. 0.
Roy, A.B., 2003. Geological and geophysical manifestations of the Reunion Plume-Indian Lithosphere interactions-evidence from Northwest India. Gondwana Research, 6(3), pp.487–500.
Santamaría-Gómez, A. & Mémin, A., 2015. Geodetic secular velocity errors due to interannual surface loading deformation. Geophysical Journal International, 202(2), pp.763–767.
Santos, G., Costa, B. & Leal, A., 2014. Motivation and benefits of implementation and certification according ISO 9001 – the Portuguese experience. International Journal of Engineering, Science and Technology, 6(5), pp.1–12.
Savage, M.K., 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Reviews of Geophysics, 37(1), pp.65–106.
Scheingraber, C. et al., 2013. Obspyload: A tool for fully automated retrieval of seismological waveform data. Seismological Research Letters, 84(3), pp.525–531.
Schulte-Pelkum, V. & Mahan, K.H., 2014. A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray. Earth and Planetary Science Letters, 402, pp.221–233.
Sen, M.K. & Stoffa, P.L., 2013. Global optimization methods in geophysical inversion, Cambridge University Press.
Serpelloni, E. et al., 2013. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. Journal of Geophysical Research: Solid Earth, 118(11), pp.6003–6024.
Sexton, R.S. & Dorsey, R.E., 2000. Reliable classification using neural networks: a genetic algorithm and backpropagation comparison. Decision Support Systems, 30(1), pp.11–22.
Shen, W., Ritzwoller, M.H. & Schulte-Pelkum, V., 2013. A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth, 118(1), pp.262–276.
Shen, Y. et al., 2014. Spatiotemporal filtering of regional GNSS network’s position time series with missing data using principle component analysis. Journal of Geodesy, 88(1), pp.1–12.
Shih, X.R., Meyer, R.P. & Schneider, J.F., 1989. An automated, analytical method to determine shear-wave splitting. Tectonophysics, 165(1-4), pp.271–278.
Shin, T.C. et al., 2013. The geophysical database management system in Taiwan. 24(1), pp.11–18.
Silber, E.A. et al., 2009. An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. 114(8), pp.1–8.
Silver, P.G. & Chan, W.W., 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10), pp.16429–16454.
Silver, P.G. & Savage, M.K., 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119(3), pp.949–963.
Singh, A.P. et al., 2012. A new insight into crustal heterogeneity beneath the 2001 Bhuj earthquake region of Northwest India and its implications for rupture initiations. Journal of Asian Earth Sciences, 48, pp.31–42.
Singh, A.P. et al., 2013. Crustal heterogeneities beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India source zone: Seismological evidence for neo-tectonics. Journal of Asian Earth Sciences, 62, pp.672–684.
Singh, A.P. et al., 2016. Fault Geometry of the M w 7 . 7 Western India Intraplate Earthquake : Constrained from Double-Difference Tomography and Fault-Plane Solutions. 106(4), pp.1446–1460.
Singh, A.P. et al., 2015. Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences. Natural Hazards, 77(S1), pp.33–49.
Smith, K.D. et al., 2004. Evidence for Deep Magma Injection Beneath Lake Tahoe, Nevada-California. Science, 305(5688), pp.1277–1280.
Spiess, F.N. et al., 1998. Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Physics of the Earth and Planetary Interiors, 108(2), pp.101–112.
Spingos, I. et al., 2020. Pytheas: An open-source software solution for local shear-wave splitting studies. Computers & Geosciences, 134, p.104346.
Spurný, P., 1994. Recent fireballs photographed in central Europe. Planetary and Space Science, 42(2), pp.157–162.
Stein, S. & Wysession, M., 2009. An introduction to seismology, earthquakes, and earth structure, John Wiley & Sons.
Stenmark, J., 2014. Precise to a fault: How GPS revolutionized seismic research. Earth, 59(5), pp.32–39.
Stoica, P. & Moses, R.L., 2005. Spectral analysis of signals.
Surya Prakasa Rao, G. & Tewari, H.C., 2005. The seismic structure of the Saurashtra crust in northwest India and its relationship with the R??union Plume. Geophysical Journal International, 160(1), pp.318–330.
Tatum, J.B., 1999. Fireballs : Interpretation of airblast data. Meteoritics & Planetary Science, 585(34), pp.571–585.
Teanby, N.A., Kendall, J.-M. & Van der Baan, M., 2004. Automation of shear-wave splitting measurements using cluster analysis. Bulletin of the Seismological Society of America, 94(2), pp.453–463.
Teferle, F.N. et al., 2006. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1841), pp.917–930.
Tewari, H.C. et al., 1991. A crustal density model across the Cambay basin, India, and its relationship with the Aravallis. Tectonophysics, 194(1-2), pp.123–130.
Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), pp.1055–1096.
Tiampo, K.F. et al., 2004. Using Eigenpattern Analysis to Constrain Seasonal Signals in Southern California. In Computational Earthquake Science Part I. Basel: Birkhäuser, Basel, pp. 1991–2003.
Tian, Y. & Shen, Z.-K., 2016. Extracting the regional common‐mode component of GPS station position time series from dense continuous network. Journal of Geophysical Research: Solid Earth, 121(2), pp.1080–1096.
Torrence, C. & Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American meteorological Society, 79(1), pp.61–78.
Torrence, C. & Webster, P.J., 1999. Interdecadal changes in the ENSO–monsoon system. Journal of Climate, 12(8), pp.2679–2690.
Trabant, C. et al., 2012. Data products at the IRIS DMC: Stepping stones for research and other applications. Seismological Research Letters, 83(5), pp.846–854.
Tregoning, P. & van Dam, T., 2005. Atmospheric pressure loading corrections applied to GPS data at the observation level. 32(22), pp.n/a–n/a.
van Dam, T. et al., 2010. Topographically induced height errors in predicted atmospheric loading effects. 115(B7), pp.B09401–10.
vanDam, T.M. & Herring, T.A., 1994. Detection of atmospheric pressure loading using very long baseline interferometry measurements. Journal of Geophysical Research: Solid Earth, 99(B3), pp.4505–4517.
vanDam, T.M., Blewitt, G. & Heflin, M.B., 1994. Atmospheric pressure loading effects on Global Positioning System coordinate determinations. 99, pp.23–939–23–950.
Velicogna, I., Wahr, J. & Van den Dool, H., 2001. Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals?, 106(B8), pp.16415–16434.
Verma, R.K. & Banerjee, P., 1992. Nature of continental crust along the Narmada—Son Lineament inferred from gravity and deep seismic sounding data. Tectonophysics, 202(2-4), pp.375–397.
Vinnik, L.P. et al., 1994. Shear wave splitting in the records of the German Regional Seismic Network. Geophysical Research Letters, 21(6), pp.457–460.
Walpole, J. et al., 2014. A uniformly processed data set of SKS shear wave splitting measurements: A global investigation of upper mantle anisotropy beneath seismic stations. Geochemistry, Geophysics, Geosystems, 15(5), pp.1991–2010.
Walpole, J. et al., 2017. Seismic anisotropy and mantle flow below subducting slabs. Earth and Planetary Science Letters, 465, pp.155–167.
Walther, M., Plenefisch, T. & Rümpker, G., 2013. Automated analysis of SKS splitting to infer upper mantle anisotropy beneath Germany using more than 20 yr of GRSN and GRF data. Geophysical Journal International, 196(2), pp.1207–1236.
Wang, Y., Jiang, W. & Agrawal, G., 2012. Scimate: A novel mapreduce-like framework for multiple scientific data formats. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). pp. 443–450.
Wdowinski, S. et al., 2004. GPS measurements of current crustal movements along the Dead Sea Fault. Journal of Geophysical Research: Solid Earth, 109(B5), p.1.
Wdowinski, S. et al., 1997. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. 102(B8), pp.18057–18070.
Wiggins, R.A., 1972. The general linear inverse problem: Implication of surface waves and free oscillations for earth structure. Reviews of Geophysics, 10(1), pp.251–285.
Williams, S.D.P. et al., 2004. Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109(B3), p.333.
Wylegalla, K. et al., 1999. Anisotropy across the Sorgenfrei--Tornquist Zone from shear wave splitting. Tectonophysics, 314(1-3), pp.335–350.
Wyrtki, K., 1975. El Niño—the dynamic response of the equatorial Pacific Oceanto atmospheric forcing. Journal of Physical Oceanography, 5.
Yamada, M. & Mori, J., 2012. Trajectory of the August 7, 2010 Biwako fireball determined from seismic recordings. Earth, Planets and Space, 64(1), pp.27–35.
Yamanaka, H. & Ishida, H., 1996. Application of genetic algorithms to an inversion of surface wave dispersion data. Bulletin of the Seismological Society of America, 86(2), pp.436–444.
Yao, H., Beghein, C. & Van Der Hilst, R.D., 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1), pp.205–219.
Yu, S.-B., Chen, H.-Y. & Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), pp.41–59.
Yuan, L.G. et al., 2008. Characteristics of daily position time series from the Hong Kong GPS fiducial network. Chinese Journal of Geophysics, 51(5), pp.976–990.
Zhang, H., Kuang, C. & Lu, C., 2016. Extract Common-Mode Error in Middle-Scale GPS Network Using Principal Component Analysis. In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I. Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, pp. 371–379.
Zhao, D. et al., 1996. Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science, 274(5294), pp.1891–1894.
Zhu, L. & Kanamori, H., 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), pp.2969–2980.
Zhu, Z., Zhou, X. & Liu, J., 2017. Noise analysis of common mode error in CMONOC GPS coordinate time series. In 2017 Forum on Cooperative Positioning and Service (CPGPS). IEEE, pp. 190–193.
Zhu, Z., Zhou, X., Deng, L., et al., 2017. Quantitative analysis of geophysical sources of common mode component in CMONOC GPS coordinate time series. Advances in Space Research, 60(12), pp.2896–2909.
指導教授 趙丰 陳伯飛(Benjamin Fong Chao Po-Fei Chen) 審核日期 2020-11-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明