博碩士論文 107328004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.191.46.36
姓名 呂育緯(Yu-Wei Lu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 熱循環、添加氫氣、加壓效應還原氮化鎳對平板型氨氣SOFCs之影響
(Effects of Thermal Cycle, Hydrogen Addition, Pressurization on the Reduction of Nickel Nitride for Ammonia Planar Solid Oxide Fuel Cells)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對平板式陽極支撐(400-μm-Ni-YSZ/3-μm-YSZ/12-μm-LSC-GDC; 5 x 5 cm2)固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)在陽極氨燃料中添加氫氣,以測試添加氫氣是否對氮化鎳的還原反應有效果?氮化鎳的發生,主要是因為氨氣在SOFC一般操作溫度下會以兩步驟進行反應,先裂解成氫氣和氮氣,再由氫氣進行反應產電。然而,氨氣在裂解成氫氣和氮氣時是吸熱反應,這會導致電池的操作溫度降低,在操作溫度低於750oC時會造成氨氣未裂解完全,進而與陽極的鎳反應生成氮化鎳,使陽極鎳觸媒有劣化的問題。本研究使用已建立之雙腔體高溫高壓爐與電池性能量測平台(含電化學阻抗頻譜量測),在不同操作溫度(T)及壓力(p)下,量測陽極三種燃料: (1)H2/N2(540/360 sccm); (2)NH3/N2(360/180 sccm); (3) NH3/H2/N2(90/300/210 sccm)於平板型固態氧化物燃料電池的電池性能、電化學阻抗頻譜與熱循環測試(Thermal Cycle Test, TCT),其中陰極為空氣(900 sccm)。在1大氣壓和800oC的操作溫度下,三種燃料的性能幾乎沒有差別,這是因為氨氣會在T ≥ 750oC時完全裂解。此外,不管在任何操作溫度下提升操作壓力皆會使OCV及電池性能上升。因為提高操作壓力會促進多孔電極中的氣體擴散及電極觸媒表面的反應物吸附速率,進而加快電化學反應速率。有關TCT,本實驗將溫度範圍設在600oC~700oC之間,以4個步驟為一循環,分別為(1)維持700oC; (2)降溫至600oC; (3)維持600oC; (4)升溫至700oC,每個步驟時間均設定為1小時,一次TCT實驗共含6個循環,總共24小時,並在每個循環間測試一組電池性能及其電化學阻抗頻譜。結果顯示,隨著循環次數的增加,電池的性能會緩慢的下降,6個循環24小時後,1大氣壓NH3/N2的性能下降24%、1大氣壓NH3/H2/N2的性能下降為10%; 而在3大氣壓時,NH3/H2/N2性能僅下降5%,顯示高壓條件下可促進氧化還原氮化鎳,使電池性能穩定性得以延長。上述結果,顯示在氨氣中添加氫氣可以有效地還原氮化鎳,特別是在高操作壓力條件下,且從電化學阻抗頻譜也得到相同的結果。本研究成果,對使用氨為燃料之SOFC在低溫操作(600 ~ 700 oC)條件時,應有所助益。
摘要(英) This thesis investigates the effect of doping hydrogen into ammonia as a fuel on the planar anode-supported solid oxide fuel cell (SOFC; 400-μm-Ni-YSZ/3-μm-YSZ/12-μm-LSC-GDC; 50 x 50 cm2) to see whether it is effective for the reduction reaction of nickel nitride. The occurrence of nickel nitride is mainly due to the two-step reaction of ammonia in SOFC. First, ammonia decomposes into hydrogen and nitrogen, and then hydrogen oxidation takes pace to generate electricity. However, the decomposition reaction of ammonia is an endothermic reaction, which reduces the temperature of the cell and ammonia can mot be decomposed completely when the operating temperature is less than T < 750oC. Then the remaining ammonia can react with the anode nickel to produce nickel nitride, resulting in degradation of the anode nickel catalyst. We perform measurements of the cell performance, electrochemical impedance spectra (EIS), and thermal cycle test (TCT) of three anode fuels: ((1) H2/N2(540/360 sccm), (2) NH3/N2(360/180 sccm), and (3) NH3/H2/N2(90/300/210 sccm)) on planar SOFC under different operating temperature (T) and pressure (p) conditions via our established dual-chamber high-temperature and high-pressure SOFC testing platform (including measurement of electrochemical impedance spectra measurements). At p = 1 atm and T = 800oC, there is almost no difference of the cell performance for these three cases. This is because ammonia is completely decomposed to H2 and N2 when T ≥ 750°C. Also, increasing p decomposed increases the open-circuit voltage and cell performance at any given T, owing to the increase of p can promote the gas diffusion in the porous electrode and the adsorption rate of reactants on the electrode catalyst surface, leading to acceleration of the electrochemical reaction rate. As to TCT, the temperature range is set at T = 600oC and T = 700oC by using 4 steps per cycle: (1) maintaining at T = 700oC; (2) cooling to T = 600oC; (3) maintaining at T = 600oC; (4) heating to T = 700oC, each step having 1 hour. As such, one TCT experiment with six cycles has a total of 24 hours; the cell performance and electrochemical impedance spectra are measured for each of six cycles. Results show that as the number of cycles increases, the cell performance slowly decreases. After 6 cycles (24 hours), the cell performance of NH3/N2 decreases by 24% at p = 1 atm, but the cell performance of NH3/H2/N2 decreases by only 10%. Moreover, when p increases to 3 atm, the decremental percentage of cell performance for the case of NH3/H2/N2 reduces to 5%. These measurements suggests that doping hydrogen into ammonia in anode can significantly reduce the nickel nitride, especially at elevated pressure condition, as to be explained by EIS date. Finally, the aforesaid results are useful for the understanding of ammonia SOFC using Ni-YSZ anode when it is operated at low temperature ranges (600 ~ 700 oC).
關鍵字(中) ★ 加壓型氨氣固態氧化物燃料電池
★ 平板型ASC
★ 熱循環
★ 氮化鎳效應
★ 添加氫氣
關鍵字(英) ★ Pressurized ammonia solid oxide fuel cell
★ Planar ASC
★ Thermal cycle
★ Nickel nitride effect
★ Hydrogen addition
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖表目錄 viii
符號說明 x
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 3
1.3 研究方法 5
1.4 論文綱要 5
第二章 燃料電池之簡介與文獻回顧 7
2.1 SOFC之簡介 7
2.2 SOFC原理與極化現象 11
2.2.1 SOFC歐姆極化 15
2.2.2 SOFC活化極化 15
2.2.3 SOFC濃度極化 16
2.3 SOFC電化學阻抗頻譜及等效電路模組 17
2.4 氨氣固態氧化物燃料電池的潛力 21
2.5 氨氣固態氧化物燃料電池的應用 22
2.6 氨氣固態氧化物燃料電池氮化鎳之效應 24
2.7 氨氣固態氧化物燃料電池氫毒化之效應 25
2.8 氨氣固態氧化物燃料電池測試相關 26
2.8.1 氨氣固態氧化物燃料電池在不同材料陽極的影響 26
2.8.2 氨氣固態氧化物燃料電池在不同條件下造成的效應 29
2.8.3 固態氧化物燃料電池在不同壓力下的影響 32
第三章 實驗設備與測量方法 36
3.1 高溫高壓SOFC測試平台 36
3.2 實驗流程及量測參數設定 40
第四章 結果與討論 43
4.1 一大氣壓下氨氣加氫之SOFC的電池性能影響 43
4.2 三大氣壓下氨氣加氫之SOFC的電池性能影響 46
4.3 以熱循環還原氮化鎳之效果 49
第五章 結果與未來工作 56
5.1 結論 56
5.2 未來工作 57
參考文獻 59
參考文獻 [1] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta 45 (2000) 2423-2435
(https://doi.org/10.1016/S0013-4686(00)00330-3).
[2] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science 72 (2015) 141-337 (https://doi.org/10.1016/j.pmatsci.2015.01.001).
[3] R.M. Ormerod, Solid oxide fuel cells, Chemical Society Reviews 32 (2003) 17-28 (https://doi.org/10.1039/B105764M).
[4] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (2000) 305-313 (https://doi.org/10.1016/S0167-2738(00)00452-5).
[5] U. Damo, M. Ferrari, A. Turan, A. Massardo, Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy, Energy 168 (2018) No.4 (https://doi.org/10.1016/j.energy.2018.11.091).
[6] E. Baniasadi, I. Dincer, Energy and exergy analyses of a combined ammonia-fed solid oxide fuel cell system for vehicular applications, International Journal of Hydrogen Energy 36 (2011) 11128-11136
(https://doi.org/10.1016/j.ijhydene.2011.04.234).
[7] R.A. George, Status of tubular SOFC field unit demomstrations, Journal Power Sources 86 (2000) 134-139 (https://doi.org/10.1016/S0378-7753(99)00413-9).
[8] Forschungszentrum Jülich, (2019), High-temperature fuel cell achieves lifetime of more than 11 years (https://fuelcellsworks.com/news/high-temperature-fuel-cell-achieves-lifetime-of-more-than-11-years/).
[9] Q. Ma, R. Peng, L. Tian, G. Meng, Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells, Electrochemistry Communications 8 (2006) 1791-1795 (https://doi.org/10.1016/j.elecom.2006.08.012).
[10] K.O.T. Okanishi, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Y.H. Iwai, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, H.Y.T. Horiuchi, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, Y.K.A. Okabe, T. Isomura, K. Eguchi, Comparative study of ammonia‐fueled solid oxide fuel cell systems, Fuel Cells 17 (2017) 383-390 (https://doi.org/10.1002/fuce.201600165).
[11] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells, ACS Applied Materials & Interfaces 7 (2015) 28701-28707 (https://doi.org/10.1021/acsami.5b11122).
[12] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, ECS Transactions 68 (2015) 2751-2762
(https://doi.org/10.1149/06801.2751ecst).
[13] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, Journal of Power Sources 305 (2016) 72-79
(https://doi.org/10.1016/j.jpowsour.2015.11.085).
[14] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic influence of oxide component in Ni-based ccrmet anodes for ammonia-fueled solid oxide fuel cells, Fuel Cells 15 (2015) 390-397
(https://doi.org/10.1002/fuce.201400135).
[15] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled solid oxide fuel cells, ACS Applied Materials & Interfaces 7 (2015) 7406-7412 (https://doi.org/10.1021/acsami.5b01048).
[16] Y. Itagaki, J. Cui, N. Ito, H. Aono, H. Yahiro, Effect of Ni-loading on Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cell, Journal of the Ceramic Society of Japan 126 (2018) 870-876 (https://doi.org/10.2109/jcersj2.18033).
[17] M. Hashinokuchi, M. Zhang, T. Doi, M. Inaba, Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells, Solid State Ionics 319 (2018) 180-185
(https://doi.org/10.1016/j.ssi.2018.02.015).
[18] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, J. Kugai, Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells, Solid State Ionics 285 (2016) 222-226 (https://doi.org/10.1016/j.ssi.2015.07.021).
[19] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Development of Ni–Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells, Journal of Power Sources 365 (2017) 148-154
(https://doi.org/10.1016/j.jpowsour.2017.08.085).
[20] A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behaviors of Ni–YSZ anode for the direct utilization of ammonia fuel in solid oxide fuel cells, Journal of The Electrochemical Society 162 (2015) F1268-F1274 (https://doi.org/10.1149/2.1011510jes).
[21] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo, K.A. Friedrich, Effect of pressure variation on power density and efficiency of solid oxide fuel cells, Electrochimica Acta 66 (2012) 158-163
(https://doi.org/10.1016/j.electacta.2012.01.075).
[22] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, Influence of pressurisation on SOFC performance and durability: A theoretical study, Fuel Cells 11 (2011) 581-591 (https://doi.org/10.1002/fuce.201000098).
[23] C.M. Huang, S.S. Shy, H.H. Li, C.H. Lee, The impact of flow distributors on the performance of planar solid oxide fuel cell, Journal of Power Sources 195 (2010) 6280-6286 (https://doi.org/10.1016/j.jpowsour.2010.04.073).
[24] 周政憲, 平板式加壓型合成氣固態氧化物燃料電池實驗研究, 碩士論文, 國立中央大學, 桃園, 台灣 (2018).
[25] 洪藝庭, 加壓型氨固態氧化物燃料電池之性能和穩定性量測, 碩士論文, 國立中央大學, 桃園, 台灣 (2018).
[26] 王證亮, 加壓型合成氣固態氧化物燃料電池加氨之實驗研究:電池性能與穩定性量測, 碩士論文, 國立中央大學, 桃園, 台灣 (2020).
[27] 趙健傑, 以氨和氫為燃料之加壓平板和鈕扣型固態氧化物燃料電池性能量測, 碩士論文, 國立中央大學, 桃園, 台灣 (2020).
[28] M.A. Azizi, J. Brouwer, Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization, Applied Energy 215 (2018) 237-289
(https://doi.org/10.1016/j.apenergy.2018.01.098).
[29] S.C. Singhal, K. Kendall, High-temperature solid oxide fuel cells: Fundamentals, design and applications 1st Ed., Elsevier, Kidlington UK, 2003.
[30] T. Mahata, S.R. Nair, R.K. Lenka, P.K. Sinha, Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route, International Journal of Hydrogen Energy 37 (2012) 3874-3882
(https://doi.org/10.1016/j.ijhydene.2011.04.207).
[31] S.B. Lee, T.H. Lim, R.H. Song, D.R. Shin, S.K. Dong, Development of a 700W anode-supported micro-tubular SOFC stack for APU applications, International Journal of Hydrogen Energy 33 (2008) 2330-2336
(https://doi.org/10.1016/j.ijhydene.2008.02.034).
[32] N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100W anode supported micro-tubular SOFC stack, Journal of Power Sources 145 (2005) 428-434 (https://doi.org/10.1016/j.jpowsour.2005.01.079).
[33] M.M. Hussain, X. Li, I. Dincer, A general electrolyte-electrode-assembly model the performance characteristics of planar anode-supported solid oxide fuel cells, Journal of Power Sources 189 (2009) 916-928
(https://doi.org/10.1016/j.jpowsour.2008.12.121).
[34] D. Cui, L. Liu, Y. Dong, M. Cheng, Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling, Journal of Power Sources 174 (2007) 246-254
(https://doi.org/10.1016/j.jpowsour.2007.08.094).
[35] T.M.M. Heenan, Investigating the effects of thermally driven degradation in solid oxide fuel cells, PhD Dissertation, University College London, London, United Kingdom (2018).
[36] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units, Journal of Power Sources 154 (2006) 448-455 (https://doi.org/10.1016/j.jpowsour.2005.10.023).
[37] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, Journal of Power Sources 177 (2008) 254-261 (https://doi.org/10.1016/j.jpowsour.2007.11.079).
[38] D. Sarantaridis, A. Atkinson, Redox cycling of Ni-based solid oxide fuel cell anodes: A review, Fuel Cells 7 (2007) 246-258
(https://doi.org/10.1002/fuce.200600028).
[39] A.D.J. Larminie, Fuel Cell Systems Explained, 2nd Ed., John Wiley & Sons, Inc, West Sussex, 2003.
[40] N.F.P. Ribeiro, M.M.V.M. Souza, O.R.M. Neto, S.M.R. Vasconcelos, M. Schmal, Investigating the microstructure and catalytic properties of Ni/YSZ cermets as anodes for SOFC applications, Applied Catalysis A: General 353 (2009) 305-309 (https://doi.org/10.1016/j.apcata.2008.11.004).
[41] M. Arif, S.C.P. Cheung, J. Andrews, A systematic approach for matching simulated and experimental polarization curves for a PEM fuel cell, International Journal of Hydrogen Energy 45 (2020) 2206-2223
(https://doi.org/10.1016/j.ijhydene.2019.11.057).
[42] M. Ni, M. K. H. Leung, D. Y. C. Leung, Parametric study of solid oxide fuel cell performance, Energy Conversion and Management 48 (2007) 1525-1535
(https://doi.org/10.1016/j.enconman.2006.11.016).
[43] W. Wang, X. Wei, D. Choi, X. Lu, G. Yang, C. Sun, Electrochemical cells for medium- and large-scale energy storage: Fundamentals, Woodhead Publishing, 2015.
[44] P. Ducheyne, Comprehensive biomaterials II, 2nd Ed., Elsevier, Oxford, 2017.
[45] 梁俊德, 加壓型SOFC碳沉積之實驗研究, 碩士論文, 國立中央大學, 桃園, 台灣 (2015).
[46] M.A. Yatoo, A.Aguadero, S.J. Skinner, LaPr3Ni3O9.76 as a candidate solid oxide fuel cell cathode: Role of microstructure and interface structure on electrochemical performance, APL Materials 7 (2018) 013204 (https://doi.org/10.1063/1.5050249).
[47] S. Khan, S. M. A. Rizvi and S. Urooj, Equivalent circuit modelling using electrochemical impedance spectroscopy for different materials of SOFC, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), March 2016, 1563-1567.
[48] A. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, ECS Transactions 68 (2015) 2751-2762
(https://doi.org/10.1149/06801.2751ecst).
[49] K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst, Applied Catalysis A: General 505 (2015) 77-85
(https://doi.org/10.1016/j.apcata.2015.07.020).
[50] T.E. Bell, L.T. Murciano, H2 production via ammonia decomposition using non-noble metal catalysts: A review, Topics in Catalysis 59 (2016) 1438-1457
(https://doi.org/10.1007/s11244-016-0653-4).
[51] K. Xie, Q. Ma, B. Lin, Y. Jiang, J. Gao, X. Liu, G. Meng, An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray, Journal of Power Sources 170 (2007) 38-41
(https://doi.org/10.1016/j.jpowsour.2007.03.059).
[52] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, T. Inagaki, Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells, Solid State Ionics 256 (2014) 1-4 (https://doi.org/10.1016/j.ssi.2013.12.026).
[53] B. Stoeckl, V. Subotić, M. Preininger, M. Schwaiger, N. Evic, H. Schroettner, C. Hochenauer, Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes, Electrochimica Acta 298 (2019) 874-883 (https://doi.org/10.1016/j.electacta.2018.12.065).
[54] S. Seidler, M. Henke, J. Kallo, W.G. Bessler, U. Maier, K.A. Friedrich, Pressurized solid oxide fuel cells: Experimental studies and modeling, Journal of Power Sources 196 (2011) 7195-7202 (https://doi.org/10.1016/j.jpowsour.2010.09.100).
[55] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, Journal of Power Sources 299 (2015) 1-10 (https://doi.org/10.1016/j.jpowsour.2015.08.080).
[56] Y.T. Hung, S.S. Shy, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850°C and its loaded short stability test, International Journal of Hydrogen Energy 45 (2020) 27597-27610
(https://doi.org/10.1016/j.ijhydene.2020.07.064).
[57] 吳佩真, 加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算, 碩士論文, 國立中央大學, 桃園, 台灣 (2013).
[58] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, Journal of Power Sources 171 (2007) 169-178
(https://doi.org/10.1016/j.jpowsour.2006.12.029).
[59] J. Zhang, H. Xu, W. Li, Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect, Applied Catalysis A: General 296 (2005) 257-267
(https://doi.org/10.1016/j.apcata.2005.08.046).
[60] P.C. Wu, H.S. Jheng, S.S. Shy, Electrochemical impedance measurement and analysis of anodic concentration polarization for pressurized solid oxide fuel cells, Journal of The Electrochemical Society 161 (2014) F513-F517
(https://doi.org/10.1149/2.078404jes).
[61] A. Leonide, V. Sonn, A. Weber, E.I. Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, Journal of The Electrochemical Society 155 (2007) B36-B41 (https://doi.org/10.1149/1.2801372).
[62] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics 189 (2011) 74-81 (https://doi.org/10.1016/j.ssi.2011.02.019).
[63] J.A. Kilner, C.D. Waters, The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides, Solid State Ionics 6 (1982) 253-259 (https://doi.org/10.1016/0167-2738(82)90046-7).
[64] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, Journal of The Electrochemical Society 158 (2011) B215-B224
(https://doi.org/10.1149/1.3519492).
[65] D. Vempaire, S. Miraglia, A. Sulpice, L. Ortega, E.K. Hlil, D. Fruchart, J. Pelletier, Structure and magnetic properties of nickel nitride thin film synthesized by plasma-based ion implantation, Journal of Magnetism and Magnetic Materials 272-276 (2004) E843-E844 (https://doi.org/10.1016/j.jmmm.2004.01.069).
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2021-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明