參考文獻 |
[1] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta 45 (2000) 2423-2435
(https://doi.org/10.1016/S0013-4686(00)00330-3).
[2] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science 72 (2015) 141-337 (https://doi.org/10.1016/j.pmatsci.2015.01.001).
[3] R.M. Ormerod, Solid oxide fuel cells, Chemical Society Reviews 32 (2003) 17-28 (https://doi.org/10.1039/B105764M).
[4] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics 135 (2000) 305-313 (https://doi.org/10.1016/S0167-2738(00)00452-5).
[5] U. Damo, M. Ferrari, A. Turan, A. Massardo, Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy, Energy 168 (2018) No.4 (https://doi.org/10.1016/j.energy.2018.11.091).
[6] E. Baniasadi, I. Dincer, Energy and exergy analyses of a combined ammonia-fed solid oxide fuel cell system for vehicular applications, International Journal of Hydrogen Energy 36 (2011) 11128-11136
(https://doi.org/10.1016/j.ijhydene.2011.04.234).
[7] R.A. George, Status of tubular SOFC field unit demomstrations, Journal Power Sources 86 (2000) 134-139 (https://doi.org/10.1016/S0378-7753(99)00413-9).
[8] Forschungszentrum Jülich, (2019), High-temperature fuel cell achieves lifetime of more than 11 years (https://fuelcellsworks.com/news/high-temperature-fuel-cell-achieves-lifetime-of-more-than-11-years/).
[9] Q. Ma, R. Peng, L. Tian, G. Meng, Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells, Electrochemistry Communications 8 (2006) 1791-1795 (https://doi.org/10.1016/j.elecom.2006.08.012).
[10] K.O.T. Okanishi, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Y.H. Iwai, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, H.Y.T. Horiuchi, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, Y.K.A. Okabe, T. Isomura, K. Eguchi, Comparative study of ammonia‐fueled solid oxide fuel cell systems, Fuel Cells 17 (2017) 383-390 (https://doi.org/10.1002/fuce.201600165).
[11] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells, ACS Applied Materials & Interfaces 7 (2015) 28701-28707 (https://doi.org/10.1021/acsami.5b11122).
[12] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, ECS Transactions 68 (2015) 2751-2762
(https://doi.org/10.1149/06801.2751ecst).
[13] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, Journal of Power Sources 305 (2016) 72-79
(https://doi.org/10.1016/j.jpowsour.2015.11.085).
[14] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic influence of oxide component in Ni-based ccrmet anodes for ammonia-fueled solid oxide fuel cells, Fuel Cells 15 (2015) 390-397
(https://doi.org/10.1002/fuce.201400135).
[15] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled solid oxide fuel cells, ACS Applied Materials & Interfaces 7 (2015) 7406-7412 (https://doi.org/10.1021/acsami.5b01048).
[16] Y. Itagaki, J. Cui, N. Ito, H. Aono, H. Yahiro, Effect of Ni-loading on Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cell, Journal of the Ceramic Society of Japan 126 (2018) 870-876 (https://doi.org/10.2109/jcersj2.18033).
[17] M. Hashinokuchi, M. Zhang, T. Doi, M. Inaba, Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells, Solid State Ionics 319 (2018) 180-185
(https://doi.org/10.1016/j.ssi.2018.02.015).
[18] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, J. Kugai, Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells, Solid State Ionics 285 (2016) 222-226 (https://doi.org/10.1016/j.ssi.2015.07.021).
[19] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Development of Ni–Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells, Journal of Power Sources 365 (2017) 148-154
(https://doi.org/10.1016/j.jpowsour.2017.08.085).
[20] A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behaviors of Ni–YSZ anode for the direct utilization of ammonia fuel in solid oxide fuel cells, Journal of The Electrochemical Society 162 (2015) F1268-F1274 (https://doi.org/10.1149/2.1011510jes).
[21] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo, K.A. Friedrich, Effect of pressure variation on power density and efficiency of solid oxide fuel cells, Electrochimica Acta 66 (2012) 158-163
(https://doi.org/10.1016/j.electacta.2012.01.075).
[22] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, Influence of pressurisation on SOFC performance and durability: A theoretical study, Fuel Cells 11 (2011) 581-591 (https://doi.org/10.1002/fuce.201000098).
[23] C.M. Huang, S.S. Shy, H.H. Li, C.H. Lee, The impact of flow distributors on the performance of planar solid oxide fuel cell, Journal of Power Sources 195 (2010) 6280-6286 (https://doi.org/10.1016/j.jpowsour.2010.04.073).
[24] 周政憲, 平板式加壓型合成氣固態氧化物燃料電池實驗研究, 碩士論文, 國立中央大學, 桃園, 台灣 (2018).
[25] 洪藝庭, 加壓型氨固態氧化物燃料電池之性能和穩定性量測, 碩士論文, 國立中央大學, 桃園, 台灣 (2018).
[26] 王證亮, 加壓型合成氣固態氧化物燃料電池加氨之實驗研究:電池性能與穩定性量測, 碩士論文, 國立中央大學, 桃園, 台灣 (2020).
[27] 趙健傑, 以氨和氫為燃料之加壓平板和鈕扣型固態氧化物燃料電池性能量測, 碩士論文, 國立中央大學, 桃園, 台灣 (2020).
[28] M.A. Azizi, J. Brouwer, Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization, Applied Energy 215 (2018) 237-289
(https://doi.org/10.1016/j.apenergy.2018.01.098).
[29] S.C. Singhal, K. Kendall, High-temperature solid oxide fuel cells: Fundamentals, design and applications 1st Ed., Elsevier, Kidlington UK, 2003.
[30] T. Mahata, S.R. Nair, R.K. Lenka, P.K. Sinha, Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route, International Journal of Hydrogen Energy 37 (2012) 3874-3882
(https://doi.org/10.1016/j.ijhydene.2011.04.207).
[31] S.B. Lee, T.H. Lim, R.H. Song, D.R. Shin, S.K. Dong, Development of a 700W anode-supported micro-tubular SOFC stack for APU applications, International Journal of Hydrogen Energy 33 (2008) 2330-2336
(https://doi.org/10.1016/j.ijhydene.2008.02.034).
[32] N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100W anode supported micro-tubular SOFC stack, Journal of Power Sources 145 (2005) 428-434 (https://doi.org/10.1016/j.jpowsour.2005.01.079).
[33] M.M. Hussain, X. Li, I. Dincer, A general electrolyte-electrode-assembly model the performance characteristics of planar anode-supported solid oxide fuel cells, Journal of Power Sources 189 (2009) 916-928
(https://doi.org/10.1016/j.jpowsour.2008.12.121).
[34] D. Cui, L. Liu, Y. Dong, M. Cheng, Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling, Journal of Power Sources 174 (2007) 246-254
(https://doi.org/10.1016/j.jpowsour.2007.08.094).
[35] T.M.M. Heenan, Investigating the effects of thermally driven degradation in solid oxide fuel cells, PhD Dissertation, University College London, London, United Kingdom (2018).
[36] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units, Journal of Power Sources 154 (2006) 448-455 (https://doi.org/10.1016/j.jpowsour.2005.10.023).
[37] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, Journal of Power Sources 177 (2008) 254-261 (https://doi.org/10.1016/j.jpowsour.2007.11.079).
[38] D. Sarantaridis, A. Atkinson, Redox cycling of Ni-based solid oxide fuel cell anodes: A review, Fuel Cells 7 (2007) 246-258
(https://doi.org/10.1002/fuce.200600028).
[39] A.D.J. Larminie, Fuel Cell Systems Explained, 2nd Ed., John Wiley & Sons, Inc, West Sussex, 2003.
[40] N.F.P. Ribeiro, M.M.V.M. Souza, O.R.M. Neto, S.M.R. Vasconcelos, M. Schmal, Investigating the microstructure and catalytic properties of Ni/YSZ cermets as anodes for SOFC applications, Applied Catalysis A: General 353 (2009) 305-309 (https://doi.org/10.1016/j.apcata.2008.11.004).
[41] M. Arif, S.C.P. Cheung, J. Andrews, A systematic approach for matching simulated and experimental polarization curves for a PEM fuel cell, International Journal of Hydrogen Energy 45 (2020) 2206-2223
(https://doi.org/10.1016/j.ijhydene.2019.11.057).
[42] M. Ni, M. K. H. Leung, D. Y. C. Leung, Parametric study of solid oxide fuel cell performance, Energy Conversion and Management 48 (2007) 1525-1535
(https://doi.org/10.1016/j.enconman.2006.11.016).
[43] W. Wang, X. Wei, D. Choi, X. Lu, G. Yang, C. Sun, Electrochemical cells for medium- and large-scale energy storage: Fundamentals, Woodhead Publishing, 2015.
[44] P. Ducheyne, Comprehensive biomaterials II, 2nd Ed., Elsevier, Oxford, 2017.
[45] 梁俊德, 加壓型SOFC碳沉積之實驗研究, 碩士論文, 國立中央大學, 桃園, 台灣 (2015).
[46] M.A. Yatoo, A.Aguadero, S.J. Skinner, LaPr3Ni3O9.76 as a candidate solid oxide fuel cell cathode: Role of microstructure and interface structure on electrochemical performance, APL Materials 7 (2018) 013204 (https://doi.org/10.1063/1.5050249).
[47] S. Khan, S. M. A. Rizvi and S. Urooj, Equivalent circuit modelling using electrochemical impedance spectroscopy for different materials of SOFC, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), March 2016, 1563-1567.
[48] A. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, ECS Transactions 68 (2015) 2751-2762
(https://doi.org/10.1149/06801.2751ecst).
[49] K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst, Applied Catalysis A: General 505 (2015) 77-85
(https://doi.org/10.1016/j.apcata.2015.07.020).
[50] T.E. Bell, L.T. Murciano, H2 production via ammonia decomposition using non-noble metal catalysts: A review, Topics in Catalysis 59 (2016) 1438-1457
(https://doi.org/10.1007/s11244-016-0653-4).
[51] K. Xie, Q. Ma, B. Lin, Y. Jiang, J. Gao, X. Liu, G. Meng, An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray, Journal of Power Sources 170 (2007) 38-41
(https://doi.org/10.1016/j.jpowsour.2007.03.059).
[52] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, T. Inagaki, Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells, Solid State Ionics 256 (2014) 1-4 (https://doi.org/10.1016/j.ssi.2013.12.026).
[53] B. Stoeckl, V. Subotić, M. Preininger, M. Schwaiger, N. Evic, H. Schroettner, C. Hochenauer, Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes, Electrochimica Acta 298 (2019) 874-883 (https://doi.org/10.1016/j.electacta.2018.12.065).
[54] S. Seidler, M. Henke, J. Kallo, W.G. Bessler, U. Maier, K.A. Friedrich, Pressurized solid oxide fuel cells: Experimental studies and modeling, Journal of Power Sources 196 (2011) 7195-7202 (https://doi.org/10.1016/j.jpowsour.2010.09.100).
[55] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, Journal of Power Sources 299 (2015) 1-10 (https://doi.org/10.1016/j.jpowsour.2015.08.080).
[56] Y.T. Hung, S.S. Shy, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850°C and its loaded short stability test, International Journal of Hydrogen Energy 45 (2020) 27597-27610
(https://doi.org/10.1016/j.ijhydene.2020.07.064).
[57] 吳佩真, 加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算, 碩士論文, 國立中央大學, 桃園, 台灣 (2013).
[58] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, Journal of Power Sources 171 (2007) 169-178
(https://doi.org/10.1016/j.jpowsour.2006.12.029).
[59] J. Zhang, H. Xu, W. Li, Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect, Applied Catalysis A: General 296 (2005) 257-267
(https://doi.org/10.1016/j.apcata.2005.08.046).
[60] P.C. Wu, H.S. Jheng, S.S. Shy, Electrochemical impedance measurement and analysis of anodic concentration polarization for pressurized solid oxide fuel cells, Journal of The Electrochemical Society 161 (2014) F513-F517
(https://doi.org/10.1149/2.078404jes).
[61] A. Leonide, V. Sonn, A. Weber, E.I. Tiffée, Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, Journal of The Electrochemical Society 155 (2007) B36-B41 (https://doi.org/10.1149/1.2801372).
[62] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics 189 (2011) 74-81 (https://doi.org/10.1016/j.ssi.2011.02.019).
[63] J.A. Kilner, C.D. Waters, The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides, Solid State Ionics 6 (1982) 253-259 (https://doi.org/10.1016/0167-2738(82)90046-7).
[64] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, Journal of The Electrochemical Society 158 (2011) B215-B224
(https://doi.org/10.1149/1.3519492).
[65] D. Vempaire, S. Miraglia, A. Sulpice, L. Ortega, E.K. Hlil, D. Fruchart, J. Pelletier, Structure and magnetic properties of nickel nitride thin film synthesized by plasma-based ion implantation, Journal of Magnetism and Magnetic Materials 272-276 (2004) E843-E844 (https://doi.org/10.1016/j.jmmm.2004.01.069). |