參考文獻 |
References
1.A. K. Jain and R. C. Dubes, “Algorithms for clustering data,” Prentice Hall, (1988).
2.A. Phillips, D. Janies and W. Wheeler. “Multiple sequence alignment in phylogenetic analysis,” Molecular Phylogenetic and Evolution 16, 317-330 (2000).
3.A. Rzhetsky, “Estimating substitution rates in ribosomal RNA genes,” Genetics 141, 771-783 (1995).
4.A. S. Mankin, “Pactamycin resistance mutations in functional sites of 16 S rRNA,” J. Mol. Biol. 274, 8-15 (1997).
5.A. Zharkikh, “Estimation of evolutionary distances between nucleotide sequences,” J. Mol. Evol. 39, 315-29 (1994).
6.B. Efron, E. Halloran and S. Holmes, “Bootstrap confidence levels for phylogenetic trees,” Proc Natl Acad Sci USA 93,13429-13434 (1996).
7.B. Efron, E. Halloran, S. Holmes, “Bootstrap confidence levels for phylogenetic trees,” Proc Natl Acad Sci USA 93, 13429-13434 (1996).
8.B. L. Maidak, J. R. Cole, T. G. Lilburn, C. T. Parker, Jr, P. R. Saxman, R. J. Farris, G. M. Garrity, G. J. Olsen, T. M. Schmidt and J. M. Tiedje, “The RDP-II (Ribosomal Database Project),” Nucl. Acids. Res. 29, 173-174 (2001).
9.C. Merryman, D. Moazed, J. McWhirter and H.F. Noller, “Nucleotides in 16 S rRNA protected by the association of 30 S and 50 S ribosomal subunits,” J. Mol. Biol. 285, 97-105 (1999).
10.C. R. Woese and N. R. Pace, “Probing RNA structure, function and history by comparative analysis,” In The RNA World (Gesteland, R. F. and Atkins, J. F., eds), Cold Spring Harbor, NY (1993).
11.C. R. Woese, O. Kandler and M. L. Wheelis, “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya,” Proc. Natl. Acad. Sci. USA 87, 4576-4579 (1990).
12.C. R. Woese, S. Winker and R. R. Gutell, “Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops",” Proc. Natl. Acad. Sci. USA, 87, 8467-8471 (1990).
13.C. Tuerk, P. Gauss, C. Thermes, D. R. Groebe, M. Gayle, N. Guild, G. Stormo, Y. D’Aubenton-Carafa, O. C. Uhlenbeck, I. Tinoco, E. N. Jr, Brody and L. Gold, “CUUCGG hairpins: extraordinarily stable RNA secondary structure associated with various biochemical processes,” Proc. Natl Acak. Sci. USA 85, 1364-1368 (1988).
14.D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp and D. L. Wheeler, “GenBank,” Nucleic Acids Res. 28, 15-8 (2000).
15.D. J. Williams and K. B. Hall, “Experimental and computational studies of the G[UUCG]C RNA tetraloop,” J. Mol. Biol. 297, 1045-1061 (2000).
16.D. L. Swofford, G. J. Olsen, P. J. Wadell and D. M. Hillis, In Molecular systematics, eds. D. M. Hillis, C. Moritz and B. K. Mable, Sinauer Associates, Sunderland, Massachusetts, pp. 407-514 (1996).
17.E. A. Feigenbaum, P. McCorduck and H. P. Nii, The Rise of the Expert Company, New York: Times Books, 1988.
18.F. Tajima and M. Nei, “Estimation of evolutionary distance between nucleotide sequences,” Mol. Biol. Evol. 1, 269-285 (1984).
19.G. J. Olsen, “Earliest phylogenetic branchings: comparing rRNA based evolutionary trees inferred with various techniques,” Cold Spring Harbor Symp. Quant. Biol. LII, 825-837 (1987).
20.G. Jan, L. S. Shawn and D. S. Gary, “Discovering common stem-loop motifs is unaligned RNA sequences,” Nucleic Acids Res. 29, 2135-2144 (2001).
21.G. Stoesser, W. Baker, A. van den Broek, E. Camon, M. Garcia-Pastor, C. Kanz, T. Kulikova, V. Lombard, R. Lopez, H. Parkinson, N. Redaschi, P. Sterk, P. Stoehr, and M. A. Tuli, “The EMBL nucleotide sequence database,” Nucl. Acids. Res. 29, 17-21 (2001).
22.H. A. Raue, W. Musters, C. A. Rutgers, J. van’t Riet and R. J. Planta, In W. E. Hill, A. Daglberg, R. A. Garrett, P. B. Moore, D. Schlesinger and J. R. Warner (eds), The Ribosome, Structure, Function and Evolution. American Society of Microbiology, Washington, DC. 217-235 (1990).
23.H. F. Noller, D. Moazed, S. Stern, T. Powers, P. N. Allen, J. M. Robertson, B. Weiser and K. Triman, In W. E. Hill, A. Daglberg, R. A. Garrett, P. B. Moore, D. Schlesinger and J. R. Warner (eds), The Ribosome, Structure, Function and Evolution. American Society of Microbiology, Washington, DC. 73-92 (1990).
24.H. F. Liu, Phylogenetic Analysis Workshop, March 5-6, 2001, Taipei. Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
25.J. Egebjerg, N. Larsen and R. A. Garrett, In W. E. Hill, A. Daglberg, R. A. Garrett, P. B. Moore, D. Schlesinger and J. R. Warner (eds), The Ribosome, Structure, Function and Evolution. American Society of Microbiology, Washington, DC. 168-179 (1990).
26.J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution 39, 783-791 (1985).
27.J. Felsenstein. Phylogenetic Inference Package (PHYLIP), Version 3.57. Department of Genetics, University of Washington, Seattle, WA. (1995).
28.J. Gorodkin, L. J. Heyer and G. D. Stormo, “Finding the most significant common sequence and structure motifs in a set of RNA sequences,” Nucleic Acids Res. 25, 3724-3732 (1997).
29.J. Gorodkin, S. L. Stricklin and G. D. Stormo, “Discovering common stem-loop motifs in unaligned RNA sequences”, Nucleic Acids Res. 29, 2135-3144 (2001).
30.J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers.
31.J. L. Thorne, N. Goldman and D. T. Jones, “Combining protein evolution and secondary structure,” Mol. Biol. Evol. 13, 666-673 (1996).
32.J. R. Fresco, B. M. Alberts and P. Doty, “Some molecular details of secondary structure of ribonucleicacid,” Nature 188, 98-101 (1960).
33.J. R. Quinlan, “C4.5 Programs for machine learning,” Morgan Kaufmann Publishers, San Mateo, California, (1993).
34.K. Takahashi and M. Nei, “Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used,” Mol. Biol. Evol. 17, 1251-1258 (2000).
35.L. KangSeok, V. Shikha, J. SantaLucia Jr and P. R. Cunningham, “In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA,” J. Mol. Biol. 269, 732-743 (1997).
36.M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences,” J. Mol. Evol. 16, 111-120 (1980).
37.N. B. Leontis, E. Westhof, “A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs,” J. Mol. Biol. 283, 571-583 (1998).
38.N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Mol. Biol. Evol. 4, 406-425 (1987).
39.P. De Rijk and R. De Wachter, “DCSE, an interactive tool for sequence alignment and secondary structure research,” Comput Appl Biosci. 9, 735-40 (1993).
40.R. Agrawal and R. Srikant, “Fast algorithm for mining association rules in large databases,” In Research Report RJ 9839, IBM Almaden Research Center, San Jose, CA, June, 487-499 (1994).
41.R. Agrawal and R. Srikant, “Mining sequential patterns,” Proc. of the 11th Int'l Conference on Data Engineering, Taipei, Taiwan (1995).
42.R. B. Lyngs, M. Zuker and C. N. S. Pedersen, “Fast evaluation of internal loops in RNA secondary structure prediction,” Bioinformatics 15, 440-445 (1999).
43.R. B. Lyngs, M. Zuker and C. N. S. Pedersen, “Internal loops in RNA secondary structure prediction,” In RECOMB99: Proceedings of the Third Annual International Conference on Computational Molecular Biology, 260-267 (1999).
44.R. R. Gutell, “Collection of small subunit (16S- and 16S-like) ribosomal RNA structures,” Nuc. Acids. Res., 22, 3502—3507 (1994).
45.R. R. Gutell, J. J. Cannone, D. Konings and D. Gautheret, “Predicting U-turns in ribosomal RNA with comparative sequence analysis,” J. Mol. Biol. 300, 791-803.
46.S. R. Eddy and R. Durbin, “RNA sequence analysis using covariance models,” Nucleic Acids Res. 22, 2079-88 (1994).
47.S. V. Morosyuk, K. Lee, J. SantaLucia Jr, P. R. Cunningham, “Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides,” J. Mol. Biol. 300, 113-126 (2000).
48.T. H. Jukes, C. R. Cantor, “Evolution of protein molecules,” In: Munro HH (ed) Mammalian protein metabolism. New York: Academic Press, 21-132 (1969).
49.Y. Van de Peer, E. Robbrecht, S. de Hoog, A. Caers, P. De Rijk and R. De Wachter, “Database on the structure of small subunit ribosomal RNA,” Nucleic Acids Res. 27, 179-183 (1999).
50.Y. Van de Peer, G. Van de Auwera and R. De Wachter, “The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA,” J. Mol. Evol. 42, 201-210 (1996).
51.Y. Van de Peer, J. M. Neefs, P. De Rijk and R. De Wachter, “Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences,” In Biochem. Syst. Ecol. 21, 43-55 (1993b).
52.Y. Van de Peer, P. De Rijk, J. Wuyts, T. Winkelmans and R. De Wachter, “The european small subunit ribosomal RNA database,” Nucleic Acids Res. 28, 175-176 (2000).
53.Y. Van de Peer, S. Chapelle and R. De Wachter, “A quantitative map of nucleotide substitution rates in bacterial rRNA,” Nucleic Acids Research 24, 3381-3391 (1996).
54.Z. Yang, “Phylogenetic analysis using parsimony and likelihood methods,” J. Mol. Evol. 42, 294-307 (1994). |