博碩士論文 107553001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:52.14.84.137
姓名 廖家承(Chia-Cheng Liao)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 伺服主機負荷分析以改善網路品質量測方法之研究
(The study of server loading analysis for network quality improvement)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 在微觀移動環境下有效資源保留之路徑管理研究★ 無線網路交握程序之預先認證方法分析與比較
★ 無線區域網路虛擬允入控制之研究★ IPv6環境下移動網路之連結更新程序及其效能之研究
★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究★ 階層化行動式IPv6移動錨點選擇機制研究
★ 具高能量移動節點之叢集式感測網路 效能研究★ 預先註冊之快速換手階層化行動式IPv6研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在目前網路的環境中,不論是一般上網(Internet)、多媒體服務(Media)、企業內部網路 (Corporate)...等等,皆會透過設立許多可提供服務內容的存取伺服器來達到地域性的備援與 負載平衡(Load Balancing),但礙於各伺服器的負載狀況是彼此獨立的,當端對端品質產生異 常時,傳統網路架構無法容易的在當下判斷是否為服務內容提供者的伺服器異常,又或是在 傳輸電路路徑當中有壅塞等之類的事件發生,導致問題排除的時間不容易掌控。
對於如何有效解決既有網路中的品質判斷問題,軟體定義網路(SDN, Software Defined Network)的可程式化管理方式可以解決此類問題。有別於傳統網路的分散架構,SDN 將網路 劃分成控制層(Control Plane)與資料層(Data Plane),透過程式化的方式對控制器(Controller)進 行控制層的運作,將各個獨立的網路設備,集中管理設備的路由規則表(Rule tables),而交換 器(Switch)僅需負責資料層的封包傳輸。
本研究將使用 SDN 可程式化作為實驗的方向,透過控制器監控著端對端的封包回應狀況, 統一回傳給資料蒐集中心(Collector)進行所有控制器之間的數據共識決策與判斷,將達成共識 的高負載,透過控制器修改 Open vSwitch 的路由表,把流量轉移至負載較輕的路徑,並經由 實驗三個測試環境,分別為傳統方式(Traditional Base)、最長延遲路由調整(Longest Delay Reroute)以及本研究提出的共識決策(Consensus Base),搭配 KVM 模擬器進行以上三種環境進 行效能分析。而經由實驗結果顯示,本研究提出的共識決策能夠合理的判斷端對端的負載狀 況,將高負載的路徑從 Open vSwitch 中修改成低負載的路徑,使整體端對端的平均回應時間 (Avg Time)有效降低,讓低負載的伺服器之資源有效地利用。
摘要(英) In the current Internet environment, all the geographic redundancy and load balancing, including Internet, media, corporate...etc, can be achieved by establishing servers that are able to provide service content. However, in view of the independence of server loading status, it is difficult to instantly determine whether it is a server malfunction from the content provider, or it is a circuit congestion occurs in the transmitting route, which result in the time uncertainty of trouble shooting under the traditional Internet structure.
To efficiently address the problems that happen when determining the quality of existing network, the programmable management of SDN(Software Defined Network) is the solution. Different from the traditional decentralized network, the network of SDN consist of Control Plane and Data Plane, operating the Controller in the Control Plane by programming it. SDN also centralizes the management of all rule tables from each independent network devices — Switch, which is only responsible for the package transmission.
The study takes the programmable SDN as the direction of the experiment. It monitors the end- to-end packet response status through the Controller, and send the data back to the central data collector to process the consensus decision-making within all controllers. Then, the result of the process will be sent to the controllers, further allowing them to modify the routing table of Open vSwitch and to transfer the flow from the determined heavy loading route to the one with lower loading. The performance analysis is conducted with using KVM simulator under three different testing environments, including Traditional Base, Longest Delay Reroute, and Consensus Base suggested from the study.
The result of the experiment shows that the Consensus base suggested by the study can correctly determine the loading status, modifying the route in Open vSwitch from heavy loading path to lowest loading path. It significantly reduced the overall responding time of the packet, and further utilized the resources from the low loading servers efficiently.
關鍵字(中) ★ 軟體定義網路
★ 共識分析
★ 負載平衡
關鍵字(英) ★ Software-Defined Network
★ Consensus
★ Load Balancing
論文目次 摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VIII
1. 第一章 緒論 1
1.1. 研究動機與目的 1
1.2. 章節概要 2
2. 第二章 相關研究與文獻 3
2.1. SDN基本介紹 5
2.2. SDN控制器 6
2.3. Open Flow通訊協定 8
2.4. 相關文獻 10
3. 第三章 實驗方法 15
3.1. 負載偵測 16
3.2. 共識分析 19
3.3. 負載分析 23
3.4. 負載調整 25
4. 第四章 實驗與結果討論 31
4.1. 實驗環境 31
4.2. 實驗結果分析 34
4.2.1. 無背景流量 35
4.2.2. 兩部Server網路頻寬滿載 39
4.2.3. 單一Server發生高延遲 43
4.2.4. 兩部Server發生高延遲 47
5. 第五章 結論 51
參考文獻 53
參考文獻 [1] Maya Tabuchi, Yoshihiro Ito and Takehiro Fujita, "Study of the Effect of the Mean and Standard Deviation of Response Time on QoE in Web Services", 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 162- 164, Oct. 2016.
[2] [Online].Available: https://www.speedtest.net/insights/blog/speed-rating-nps-taiwan-mobile- q2-2020/#chinese [Accessed Sep. 05, 2020.]
[3] [Online].Available: https://www.speedtest.net/ [Accessed Sep. 05, 2020.]
[4] S. Wilson Prakash, P. Deepalakshmi, "Server-based Dynamic Load Balancing", 2017
International Conference on Networks & Advances in Computational Technologies (NetACT),
pp. 25-28, July. 2017.
[5] V Nithin ; A. Rathod ; V. Badarla ; T. Humernbrum ; S. Gorlatch, "Efficient load balancing for
multicast traffic in data center networks using SDN", 2018 10th International Conference on
Communication Systems & Networks (COMSNETS), pp. 113-120, Jan. 2018.
[6] [Online].Available: https://sdn.systemsapproach.org/intro.html [Accessed Sep. 07, 2020.]
[7] [Online].Available: https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-
controller/ [Accessed Sep. 06, 2020.]
[8] [Online].Available: https://www.opennetworking.org/sdn-definition/ [Accessed Sep. 07, 2020.]
[9] [Online].Available: https://www.sdxcentral.com/networking/sdn/definitions/what-is-ryu-
controller/ [Accessed Sep. 07, 2020.]
[10] [Online].Available: https://thenewstack.io/sdn-series-part-iv-ryu-a-rich-featured-open-source-
sdn-controller-supported-by-ntt-labs/ [Accessed Sep. 07, 2020.]
[11] [Online].Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/TR_Multiple_Flow_Tables_and_TTPs.pdf [Accessed Sep. 07, 2020.]
[12] [Online].Available: https://www.opennetworking.org/wp-content/uploads/2013/04/openflow- spec-v1.3.1.pdf [Accessed Sep. 07, 2020.]
[13] [Online].Available: https://en.wikipedia.org/wiki/OpenFlow [Accessed Sep. 07, 2020.]
[14] [Online].Available: https://www.netronome.com/blog/ovs-offload-models-used-nics-and-
smartnics-pros-and-cons/ [Accessed Sep. 07, 2020.]
[15] [Online].Available: http://www.openvswitch.org//support/dist-docs/ovs-fields.7.txt
[Accessed Sep. 08, 2020.]
[16] [Online].Available: https://link.springer.com/article/10.1007/s10922-020-09550-z
[Accessed Sep. 08, 2020.]
[17] Dong-Yan Zhang, Ming-Zeng Hu, Hong-Li Zhang Ting-Biao Kang "THE RESEARCH ON
METRICS FOR NETWORK PERFORMANCE EVALUATION", 2005 International
Conference on Machine Learning and Cybernetics, pp. 1127-131 Vol. 2, Aug. 2005.
[18] Umme Zakia, Hanene Ben Yedder, "Dynamic Load Balancing in SDN-Based Data Center
Networks", 2017 8th IEEE Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pp. 242-247, Oct. 2017.
[19] Hatim Gasmelseed Ahmed, R.Ramalakshmi, "Performance Analysis of Centralized and
Distributed SDN Controllers for Load Balancing Application", 2018 2nd International
Conference on Trends in Electronics and Informatics (ICOEI), pp. 758-764, May. 2018.
[20] Soheil Hassas Yeganeh, Yashar Ganjali, "Kandoo: A Framework for Efficient and Scalable
Offloading of Control Applications", HotSDN ′12: Proceedings of the first workshop on Hot
topics in software defined networks, pp. 19-24, Aug. 2012.
[21] Nataša Maksi, "Two-Phase Load Balancing for Data Center Networks using OpenFlow", 2017
25th Telecommunication Forum (TELFOR), pp. 1-4, Nov. 2017.
[22] Jingmei Li, Linfeng Yang *, Jiaxiang Wang, Shuang Yang, "Research on SDN Load Balancing based on Ant Colony Optimization Algorithm", 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 979-982, Dec. 2018.
[23] Vidya S.Handur, Prakash R.Marakumbi, "Response time analysis of dynamic load balancing algorithms in Cloud Computing", 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 371-375, July. 2020.
[24] Geon-Hwan Kim, You-Ze Cho, "Delay-Aware BBR Congestion Control Algorithm for RTT Fairness Improvement", IEEE Access, pp. 4099-4109 Vol. 8, Dec. 2019.
[25] [Online].Available: https://en.wikipedia.org/wiki/Consensus_algorithm [Accessed Sep. 08, 2020.]
[26] [Online].Available: https://blockgeeks.com/guides/blockchain-consensus/ [Accessed Sep. 08, 2020.]
[27] [Online].Available: https://en.wikipedia.org/wiki/Standard_deviation [Accessed Sep. 08, 2020.]
[28] Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N. Goodman & Douglas G. Altman, "Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations", European Journal of Epidemiology, pp. 337-350 Vol. 31, July. 2016
[29] [Online].Available: https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine [Accessed Oct. 10, 2020.]
指導教授 陳彥文(Yen-Wen Chen) 審核日期 2021-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明