博碩士論文 107552003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.216.53.7
姓名 卓文心(Wen-Hsin Chuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 探討延展實境與運算思維融入數學與化學課程的學習感受、學習行為與學習成效之研究
(Study on Learning Perceptions, Behaviors, and Effectiveness of Extended Reality and Computational Thinking in Math and Chemical Courses)
相關論文
★ 觀看LINE平台上教學影片行為模式對學生的使用偏好、學習動機及學習成效之影響: 以網路程式課程為例★ 探討聊天機器人輔助程式教學系統與問題解決教學融入STEM程式課程的學習感受、學習行為與學習成效之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 現有的講述性教學方法進行化學與數學學習效果往往不如預期,這樣方法容易造成學生無法融會貫通學習目的或誤解科學術語與含意。本研究運用運算思維教學策略改良現有的講述性教學方式,並加入延展實境技術融入化學與數學課程教具,其目的是為了探討延展實境與運算思維融入數學與化學課程對學生的學習感受、學習行為與學習成效之差異。
實驗對象為北部某一所國中的學生,實驗主題為化學融合反應課程。另一所高中的學生,實驗主題為數學幾何圖形課程。課程實驗活動之後,我們蒐集前測與後測評量、學習感受問卷、學習動機問卷、以及系統平台之操作紀錄等數據。依據前測結果,我們將先備知識分成高、中、及低三組,我們運用統計方法進行分析學生的學習感受、學習行為及學習成效。
實驗結果發現延展實境技術與運算思維教學策略融入數學與化學課程教具,有助於學生在運算思維能力與學習成效,就像數學與化學課程將單元一個大範圍問題能拆解成一個個步驟、瞭解組合模式、抽象畫思考模式、產生演算法思考模式等。
摘要(英) Existing didactic strategies for learning chemistry and mathematics often do not work as well as expected. This approach may result in students not being able to integrate the learning objectives or misunderstand the terminology and meaning of the learning objective. In this thesis, this study applies computational thinking strategies to improve the existing didactic approach and incorporates extended reality technologies into chemistry and mathematics instructional aids. The purpose of this study is to explore the differences in learning experiences, learning behaviors, and learning outcomes of students who have integrated extended reality and computational thinking into the mathematics and chemistry curricula.
The subject of the experiment was students from a northern high school, and the topic of the experiment was the chemical fusion reaction. In addition, the subject of the experiment was a mathematical geometry course for students from another high school. After the experimental activity, we collected the experimental data such as pre-test and post-test evaluations, learning experience questionnaires, learning motivation questionnaires, and operating records of the system. The students were divided into high, medium, and low prior knowledge groups according to their pre-tests, and we used statistical methods to analyze their learning experience, learning behavior, and learning effectiveness.
The experimental results found that the integration of extended reality technologies and computational thinking teaching strategies into mathematics and chemistry curriculum aids students in their computational thinking skills and learning outcomes. For example, the mathematics and chemistry courses break down a large range of problems into individual steps, understanding combinatorial patterns, abstracting patterns of thinking, generating algorithmic patterns of thinking, and so on.
關鍵字(中) ★ 延展實境
★ 運算思維
★ 數學
★ 化學
★ 學習感受
★ 學習行為
★ 學習成效
關鍵字(英) ★ Extended Reality
★ Computational Thinking
★ Math
★ Chemical
★ Learning Behavior
★ Learning Effectiveness
★ Learning Perceptions
論文目次 摘要 i
Abstract ii
致謝 iv
目  錄 v
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1研究背景 1
1.2目的 1
1.3論文架構 2
第二章 文獻探討 3
2.1數學與化學教育 3
2.2運算思維教學策略融入化學與數學教育 4
2.3運算思維教學策略使用延展實境技術 6
2.4學習動機問卷(ARCS)與科技接受度問卷(TAM) 9
2.5 研究問題 11
第三章 系統設計 12
3.1系統設計之架構圖 12
3.1.1本機端之虛擬實境部份 12
3.1.2本機端之擴增實境部份 12
3.1.3伺服器端 13
3.1.4資料庫 13
3.2系統設計之前端功能 14
3.2.1化學拼拼樂 14
3.2.2化學魔法教室 18
3.2.3化學生活小常識 19
3.2.4化學前端評量系統 20
3.2.5數學三角錐體積推導 21
3.2.6數學圓錐體積計算 23
3.2.7數學三角重心推導 24
3.2.8數學前端評量系統 26
3.3系統後台之設計 26
3.3.1化學教學後台 28
3.3.2數學教學平台 35
第四章 研究方法 42
4.1延展實境技術與運算思維教學策略融入化學課程 42
4.1.1實驗對象 42
4.1.2實驗教材 42
4.1.3實驗程序 43
4.1.4實驗工具 44
4.2延展實境技術與運算思維教學策略融入數學課程 47
4.2.1實驗對象 47
4.2.2實驗教材 47
4.2.3實驗程序 48
4.2.4實驗工具 49
4.3數據蒐集 52
4.3.1化學 52
4.3.2數學 53
第五章 研究結果 54
5.1延展實境技術與運算思維教學策略融入化學課程結果 54
5.1.1學習成效分析結果 54
5.1.2不同先備知識的學生對於系統使用接受度之分析結果 59
5.1.3不同先備知識的學生行為分析描述性統計結果 61
5.1.4不同先備知識的學生於學習動機之分析結果 65
5.2延展實境技術與運算思維教學策略融入數學課程 67
5.2.1學習成效分析結果 67
5.2.2不同先備知識的學生對於系統使用接受度之分析結果 72
5.2.3行為分析描述性統計結果 75
5.2.4不同先備知識的學生於學習動機與成效結果 78
第六章 結果與討論 83
6.1延展實境融入化學與數學對於學生的學習成效有何差異? 83
6.2不同先備知識的學生對於新技術融入化學與數學教學之科技接受度為何? 83
6.3不同先備知識的學生對於化學與數學平台之操作行為為何? 84
6.4不同先備知識的學生對化學與數學平台之學習動機為何? 84
參考文獻 86
英文部份 86
中文部份 92
附錄1、化學拼拼樂 學習動機問卷 93
附錄2、化學魔法教室 學習動機問卷 94
附錄3、化學生活小常識 學習動機問卷 95
附錄4、化學拼拼樂 科技接受度問卷 96
附錄5、化學魔法教室 科技接受度問卷 97
附錄6、化學生活小常識 科技接受度問卷 98
附錄7、化學拼拼樂 前測與後測試卷 99
附錄8、化學魔法教室 前測與後測試卷 100
附錄9、化學生活小常識 前測與後測試卷 101
附錄10、數學三角錐體積推導 學習動機問卷 102
附錄11、數學圓錐體積計算 學習動機問卷 103
附錄12、數學三角重心推導 學習動機問卷 104
附錄13、數學三角錐體積推導 科技接受度問卷 105
附錄14、數學圓錐體積計算 科技接受度問卷 106
附錄15、數學三角重心推導 科技接受度問卷 107
附錄16、數學三角錐體積推導 前測與後測試卷 108
附錄17、數學圓錐體積計算 前測與後測試卷 109
附錄18、數學三角重心推導 前測與後測試卷 110
附錄19、虛擬實境融入幾何圖形數學教材教具之研究實驗同意書 111
附錄20、混合實境融入化學融合反應教材教具之研究實驗同意書 112
參考文獻 Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355
Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS quarterly, 16, 227-247. https://doi.org/10.2307/249577
All, A., Plovie, B., Castellar, E. P. N., & Van Looy, J. (2017). Pre-test influences on the effectiveness of digital-game based learning: A case study of a fire safety game. Computers & Education, 114, 24-37. https://doi.org/10.1016/j.compedu.2017.05.018
Bodner, G. M. (1991). I have found you an argument: The conceptual knowledge of beginning chemistry graduate students. Journal of Chemical Education, 68(5), 385. https://doi.org/10.1021/ed068p385
Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach′s alpha. Bmj, 314(7080), 572. https://doi.org/10.1136/bmj.314.7080.572
Baykul, Y. (2014). Ortaokulda matematik öğretimi (5-8 sınıflar) (2. Baskı). Ankara: Pegem Yayıncılık.
Bailey, D. H., & Borwein, J. M. (2011). Exploratory experimentation and computation. Notices of the American Mathematical Society, 58(10), 1410– 1419.
Bosch, K. A., & Bowers, R. S. (1992). “Count Me In, Too”: Math Instructional Strategies for the Discouraged Learner. The clearing house, 66(2), 104-106. https://doi.org/10.1080/00098655.1992.9955943
Ben-Zvi, R., Silberstein, J., & Mamlok, R. (1993). A model of thermal equilibrium: A tool for the introduction of thermodynamics. Journal of Chemical Education, 70(1), 31. https://doi.org/10.1021/ed070p31
Computer Science Teachers Association. (2011). CSTA K-12 computer science standards. Retrieve from http://csta. acm. org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS. pdf.
Chen, C. M., & Tsai, Y. N. (2012). Interactive augmented reality system for enhancing library instruction in elementary schools. Computers & Education, 59(2), 638-652. https://doi.org/10.1016/j.compedu.2012.03.001
Chittaro, L., & Ranon, R. (2007). Web3D technologies in learning, education and training: Motivations, issues, opportunities. Computers & Education, 49(1), 3-18. https://doi.org/10.1016/j.compedu.2005.06.002
Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia tools and applications, 51(1), 341-377. https://doi.org/10.1007/s11042-010-0660-6
Çöltekin, A., Lochhead, I., Madden, M., Christophe, S., Devaux, A., Pettit, C., Lock, O., Shukla, S., Herman, L., Stachoň, Z., Kubíček, P., Snopková, D., Bernardes, S., & Hedley, N. (2020). Extended reality in spatial sciences: a review of research challenges and future directions. ISPRS International Journal of Geo-Information, 9(7), 439. https://doi.org/10.3390/ijgi9070439
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13, 319-340. https://doi.org/10.2307/249008
Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students′ motivation for a visual art course. Computers & Education, 68, 586-596. https://doi.org/10.1016/j.compedu.2012.03.002
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
Foster, I. (2006). A two-way street to science′s future. Nature, 440(7083), 419-419. https://doi.org/10.1038/440419a
Fast-Berglund, Å., Gong, L., & Li, D. (2018). Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manufacturing, 25, 31-38. http://dx.doi.org/10.1016/j.promfg.2018.06.054
Furió, D., Juan, M. C., Seguí, I., & Vivó, R. (2015). Mobile learning vs. traditional classroom lessons: a comparative study. Journal of Computer Assisted Learning, 31(3), 189-201. https://doi.org/10.1111/jcal.12071
Fathema, N., Shannon, D., & Ross, M. (2015). Expanding the Technology Acceptance Model (TAM) to examine faculty use of Learning Management Systems (LMSs) in higher education institutions. Journal of Online Learning & Teaching, 11(2).
Herron, J. D. (1996). The Chemistry Classroom: Formulas for Successful Teaching. [Adobe Acrobat PDF] Retrieved from https://www.amazon.com/Chemistry-Classroom-Formulas-Successful-Publication/dp/0841232989
Hsieh, M. C., & Chen, S. H. (2019). Intelligence Augmented Reality Tutoring System for Mathematics Teaching and Learning. Journal of Internet Technology, 20(5), 1673-1681 https://doi.org/10.3966/160792642019092005031.
Henderson, P. B., Cortina, T. J., Hazzan, O., Wing, J. M. (2007) Computational thinking. In Proceedings of the 38th ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’07), 195–196. https://doi.org/10.1145/1227310.1227378
Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of management information systems, 16(2), 91-112. https://doi.org/10.1080/07421222.1999.11518247
Keller, J. M. (1999). Using the ARCS motivational process in computer‐based instruction and distance education. New directions for teaching and learning, 1999(78), 37-47. https://doi.org/10.1002/tl.7804
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2.
Ke, F., & Hsu, Y. C. (2015). Mobile augmented-reality artifact creation as a component of mobile computer-supported collaborative learning. The Internet and Higher Education, 26, 33-41. https://doi.org/10.1016/j.iheduc.2015.04.003
Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58. https://doi.org/10.1016/j.compedu.2014.07.010
Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educational researcher, 42(8), 445-452. https://doi.org/10.3102/0013189X13511661
Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191. https://doi.org/10.1287/isre.2.3.173
Masrom, M. (2007). Technology acceptance model and e-learning. Technology, 21(24), 81.
Melanie J. Maas & Janette M. Hughes (2020): Virtual, augmented and mixed reality in K–12 education: a review of the literature, Technology, Pedagogy and Education, 29(2), 231-249. https://doi.org/10.1080/1475939X.2020.1737210
Maas, M. J., & Hughes, J. M. (2020). Virtual, augmented and mixed reality in K–12 education: a review of the literature. Technology, Pedagogy and Education, 29(2), 231-249. https://doi.org/10.1080/1475939X.2020.1737210
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
Martens, R., Gulikers, J., & Bastiaens, T. (2004). The impact of intrinsic motivation on e‐learning in authentic computer tasks. Journal of computer assisted learning, 20(5), 368-376. https://doi.org/10.1111/j.1365-2729.2004.00096.x
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students′ learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40. https://doi.org/10.1016/j.compedu.2013.07.033
Nakhleh, M. B. (1992). Why some students don′t learn chemistry: Chemical misconceptions. Journal of chemical education, 69(3), 191. https://doi.org/10.1021/ed069p191
Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional science, 11(3), 183-200. https://doi.org/10.1007/BF00414279
Özdemir, B. G. (2017). Mathematical practices in a learning environment designed by realistic mathematics education: Teaching experiment about cone and pyramid. European Journal of Education Studies, 3(5), 405-431. http://dx.doi.org/10.46827/ejes.v0i0.675
Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of educational Psychology, 95(4), 667. https://doi.org/10.1037/0022-0663.95.4.667
Paas, F., Tuovinen, J. E., Van Merrienboer, J. J., & Darabi, A. A. (2005). A motivational perspective on the relation between mental effort and performance: Optimizing learner involvement in instruction. Educational Technology Research and Development, 53(3), 25-34. https://doi.org/10.1007/BF02504795
Rasimah, C. M. Y., Ahmad, A., & Zaman, H. B. (2011). Evaluation of user acceptance of mixed reality technology. Australasian Journal of Educational Technology, 27(8). https://doi.org/10.14742/ajet.899
Second Life. (2020, June 25) Available online. [Game official website]. Retrieved from: https://secondlife.com/.
Simsek, A. (2014). Interview with John M. Keller on Motivational Design of Instruction. Contemporary educational technology, 5(1), 90-95.
Schiefele, U. (1996). Topic interest, text representation, and quality of experience. Contemporary educational psychology, 21(1), 3-18. https://doi.org/10.1006/ceps.1996.0002
Sherman, W. R., & Craig, A. B. (2018). Understanding virtual reality: Interface, application, and design. [Adobe Acrobat PDF] Retrieved from https://www.books.com.tw/products/F014329746
Southgate, E., Smith, S. P., & Cheers, H. (2016). Immersed in the future: A roadmap of existing and emerging technology for career exploration. [Adobe Acrobat PDF]. Retrieved from http://hdl.handle.net/1959.13/1321628
Teichert, M. A., & Stacy, A. M. (2002). Promoting understanding of chemical bonding and spontaneity through student explanation and integration of ideas. Journal of research in science teaching, 39(6), 464-496. https://doi.org/10.1002/tea.10033
World of Warcraft. (2020, June 25) Available online. [Game official website]. Retrieved from: https://worldofwarcraft.com/.
Weiner, B. (1990). History of motivational research in education. Journal of educational Psychology, 82(4), 616. https://doi.org/10.1037/0022-0663.82.4.616
Wing, J.M., (2010) Computational thinking: What and why?. Unpublished manuscript Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, Retrieved from https://www.cs.cmu.edu/∼CompThink/resources/TheLinkWing.pdf.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2014). Defining computational thinking for science, technology, engineering, and math. [Poster presentation]. Philadelphia. USA. Retrieved from http://ccl. northwestern. edu/2014/CT-STEM_AERA_2014. pdf.
中文部份
石岡國中(民107)國三理化複習化學反應方程式總整理。取自https://etoe.tc.edu.tw/frs/dw/moid/4eefff47f26d96352a000001/did/7654
郭重吉 (民 106)。自然與生活科技課本二下(生科)。台南市:南一書局出版社。
吳慧真、陳勇政、黃藝美 (民108)。【103舊課綱 】領航高中數學1。新北市:龍騰出版社。
指導教授 蘇育生(SU,YU-SHENG) 審核日期 2020-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明