博碩士論文 105584602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.188.211.8
姓名 戴思萍(Siska Wati Dewi Purba)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱
(Authentic Contexts Supported Physics Learning with Ubiquitous-Physics App in Creativity, Scalability, and Sustainability)
相關論文
★ 同步表演機器人之建構與成效評估★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響
★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context
★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts
★ 智慧互動SmartVpen在真實情境對於英文學習之影響★ 利用合作虛擬化的網絡設計輔助計算機網路學習
★ 探討擴展合作式多媒體認知理論和其對EFL聽力與口語能力之影響 - 結合動覺辨識和學習者設計內容之猜謎遊戲★ 在真實情境中利用智慧機制提升國小學生之外語口說及對話能力之評估
★ 探討在真實情境下教師回饋對學習認知與學習持續性之影響★ 註釋、對話代理和協作概念圖支持大學生議論文寫作和後設認知的培養
★ Developing and Validating the Questionnaire and Its Model for Sustainable and Scalable Authentic Contextual Learning Supported by Mobile Apps★ 探討個人化、情境化及社會化的智慧機制 輔助真實情境國小幾何學習與其對學習成效之影響
★ Investigation of smart mechanisms for authentic contextual learning with sensor and recognition technologies★ 探討智慧回饋如何影響學習時眼動和觸控 操作的表現-以 Covid-19 快篩模擬為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在學習計劃中考慮可擴展性、可持續性和創造力對取得教育成功至關重要。在教育中使用科技為發展傳統的課堂/學校學習提供了更多機會,可以將實踐和應用結合到真實的環境中,進行更全面更徹底的學習,並透過這些獲得及完成有關可擴展性、可持續性和創造力的學習設計。創新技術(如無處不在的技術)是在具有挑戰性的過程中進行變革的一種工具,它將復雜的現象集結到可擴展的且可持續的學習中。除此之外,使用真實環境跟主動式協同互動,例如同儕共享和同儕評估,可以開拓創造力的空間。本研究的目的是應用真實的行動學習,以努力增強學生在真實環境中的創造力、可擴展性和可持續性。以下三項實驗為進行調查創意在真實環境中進行創造力、可擴展性和可持續性的學習。
第一個實驗的統計結果表明,使用U-Physics應用程式在真實的環境中探索物理現象並在討論板上共享實驗結果可以增強探究學習行為、學習表現及學生的創造力。U-Physics系統提供學生們多樣的表象方法,如圖形、表格、公式、文本註解和討論區等,這些應用程序可以幫助學生進行操作,並支持他們以創造力來解釋實驗結果。在教學方面,使用真實情境活動和主動協同互動,如:同儕共享,也可以開拓學生在創造力上的發展。第二個實驗的統計結果顯示,讓學生在真實情境使用U-Physics系統中的g-map功能,可以提高學生對理解圖表、應用公式、獲得結論和發表貼文與評論上的表現,從而提高了他們在地圖上的學習紀錄的品質與數量。所以證實是可以提高可擴展性學習中的學習內容和範圍。第三個實驗的統計結果顯明,學習活動配合使用U-Physics應用程式可以維持學生的學習動機(甚至在非物理課時間亦同),並產生更有意義的實驗結果。讓學生在許多真實情境下學習也可以激發可持續性的發展空間。
本研究的主要貢獻在於,整合真實情境活動、多樣化表象法和真實實驗的整合成為可以打開學生創造力空間的因素,此外,持續進行的真實情境活動可以同時推動可持續學習。以此為據,強烈建議教師在教學中應該考慮使用真實情境活動。在真實情境學習中結合先進技術可以幫助實現學習的可擴展性。以位置為基礎的整合系統,如同U-Physics應用程式中的gMap,將成為一項強大的功能,它可以幫助學生探索從小範圍到大區域的傾斜現象並產生越來越多的學習記錄。將提示相關的學習支架整合進U-Physics系統中也可以維持學生的學習動機。因此,建議老師及研究人員可以多多利用移動設備中的先進特色,例如加速度傳感器、陀螺儀、磁傳感器、GPS和光傳感器等在真實情境學習上。
摘要(英) Considering scalability, sustainability, and creativity in learning programs becomes very critical to get success in education. The use of technologies in education gives more opportunities to evolve traditional classroom/school learning to integrate real practice and application in authentic contexts, thereby thorough and complete learning design concerning scalability, sustainability and creativity possibly obtained. Innovative technology such as ubiquitous technology, is an instrument of change in a challenging process which integrate complex phenomenon to move forward into scalable and sustainable learning. In addition, the use of authentic context and active-collaborative interaction, e.g., peer sharing and peer assessment, can open up the space of creativity. The aim of this study was to apply authentic mobile learning in an effort to enhance students’ creative, scalable and sustainable learning in authentic environments. Three experiments were conducted to investigate creative, scalable and sustainable learning in authentic environments.
Statistical results of the first experiment showed exploring physics phenomena with U-Physics app in authentic contexts and sharing the experimental results in the discussion board can enhance inquiry learning behaviors and learning achievement as well as students’ creativity. Providing students with multiple representations in the U-Physics app such as graphs, tables, formulas, text annotations, and discussion board functions can facilitate students to make manipulations which can support their creativity to explain the experimental findings. In terms of pedagogical, the use of authentic context activity and active-collaborative interaction, e.g., peer sharing also can open up the space of creativity of students. Statistical results of the second experiment showed allowing students to use the gMap of U-Physics in authentic contexts could enhance students’ interpreting graphs, applying formulas, drawing conclusions, posts and comments and therefore enhance the quantity and quality of their learning records on the map. Consequently, it could enhance scalable learning in termsof learning contents and areas. Statistical results of the third experiment showed that using U-Physics app and the learning activities can sustain students’ learning motivation to learn physics even after-school hour and produce more meaningful experimental results. Allowing students to learn many authentic contexts also can stimulate to open the way of sustainable space.
The main contribution of this study is that the integration of authentic activities, multiple representations, and real experiments become factors that can open creativity space of students. Besides, continued authentic activities can also push sustainable learning. On that basis, we strongly recommend that teachers should consider using the authentic contexts activity in their teaching. The integration of advanced technology in authentic contextual learning can help to reach scalability in learning. Integrating location-based such as a gMap into U-Physics app become a powerful function that can help students to explore inclined phenomena from a small area into a big area and to produce more and more learning records. The learning scaffoldings such as hints that was integrated into U-Physics app could also sustain students’ learning motivation. For that reason, we recommend that teachers and researchers utilize advanced features of mobile devices such as acceleration sensors, gyroscope sensors, magneto sensors, GPS, and light sensors in authentic context activity.
論文目次 Table of Contents
摘要 ............................................................................................................................................ i
Abstract ..................................................................................................................................... iii
Acknowledgement ..................................................................................................................... v
Table of Contents ..................................................................................................................... vi
List of Figures ........................................................................................................................... ix
List of Tables ............................................................................................................................. x
List of Appendix ....................................................................................................................... xi
Chapter 1. Introduction .......................................................................................................... 1
1.1 Background ....................................................................................................................... 1
1.2 Theoretical Supports ......................................................................................................... 4
1.2.1 Enactivism Theory ...................................................................................................... 4
1.2.2 Big Education ............................................................................................................. 5
1.2.3 Objectives and Research Questions ............................................................................ 8
Chapter 2. Literature Review ............................................................................................... 12
2.1 Enactivism Theory and Authentic Learning ................................................................... 12
2.2 Big Education and Authentic Learning ........................................................................... 13
2.3 Physics Learning ............................................................................................................. 18
2.4 Benefits of Real Physics Experiments for Students ........................................................ 19
2.5 Inquiry Behaviors in Physics Learning ........................................................................... 20
2.6 Authentic Learning Supported Mobile Technologies ..................................................... 21
2.7 The Benefits of Location-Based Technologies and Google Map for Learning .............. 23
2.8 The Cognitive Diffusion Model ...................................................................................... 24
Chapter 3. System Design and Implementation ................................................................. 27
3.1 The First-Year of U-Physics App.................................................................................... 27
3.2 The Second-Year of U-Physics App ............................................................................... 30
3.3 The Third-Year of U-Physics App .................................................................................. 34
Chapter 4. Research Methodology ....................................................................................... 40
4.1 The First-Year Study ....................................................................................................... 40
4.1.1 Research Questions and Hypotheses ........................................................................ 40
4.1.2 Participants and Experimental Procedure ................................................................. 40
4.1.3 Research Variables ................................................................................................... 42
4.1.4 Research Instruments and Tools ............................................................................... 42
4.1.5 Learning Activities ................................................................................................... 43
4.1.6 Experimental Design ................................................................................................. 43
4.1.7 Statistical Analysis Methods ..................................................................................... 44
4.2 The Second-Year Study .................................................................................................. 44
4.2.1 Research Questions and Hypotheses ........................................................................ 44
4.2.2 Participants and Experimental Procedure ................................................................. 45
4.2.3 Research Variables ................................................................................................... 47
4.2.4 Research Instruments and Tools ............................................................................... 48
4.2.5 Learning Activities ................................................................................................... 49
4.2.6 Experimental Design ................................................................................................. 49
4.2.7 Statistical Analysis Methods ..................................................................................... 50
4.3 The Third-Year Study ..................................................................................................... 50
4.3.1 Research Questions and Hypotheses ........................................................................ 50
4.3.2 Participants and Experimental Procedure ................................................................. 51
4.3.3 Research Variables ................................................................................................... 54
4.3.4 Research Instruments and Tools ............................................................................... 55
4.3.5 Learning Activities ................................................................................................... 56
4.2.6 Experimental Design ................................................................................................. 56
4.2.7 Statistical Analysis Methods ..................................................................................... 57
Chapter 5. Results and Discussion ....................................................................................... 58
5. 1. The First-Year Study ..................................................................................................... 58
5.1.1 Analysis of Learning Achievements ......................................................................... 58
5.1.2 Distribution of Cognitive Levels .............................................................................. 64
5.1.3 Perceptions and Behavioral Intentions of Students .................................................. 66
5.2 The Second-Year of Study .............................................................................................. 68
5.2.1 Analysis Results of Learning Achievements ............................................................ 68
5.2.2 Analysis Results of inquiry learning behavior scores ............................................... 68
5.2.3 Analysis Results Learning Records .......................................................................... 71
5.2.4 Variety of Learning Places........................................................................................ 72
5.3 The Third Year Study ...................................................................................................... 73
5.3.1 Analysis of Learning Achievements ......................................................................... 73
5.3.2 Results of Inquiry Learning Behaviors Analysis ...................................................... 75
5.3.3 Learning Sustainability ............................................................................................. 78
5.3.4 Analysis of Students’ Physical Health ...................................................................... 79
5.3.5 Perception of Health and Motivation towards U-Physics ......................................... 81
5.4 Implications and Suggestions .......................................................................................... 86
Chapter 6. Conclusions and Future Works ........................................................................ 88
6.1 Conclusions ..................................................................................................................... 88
6.2 Future works .................................................................................................................... 89
Abbreviations .......................................................................................................................... 91
Glossary ................................................................................................................................... 92
References ............................................................................................................................... 93
Appendixes ............................................................................................................................ 101
List of Publications ................................................................................................................ 107
參考文獻 References
Abdous, M. h., Camarena, M. M., & Facer, B. R. (2009). MALL technology: Use of academic podcasting in the foreign language classroom. ReCALL, 21(1), 76-95.
Ahn, T. Y., & Lee, S. M. (2016). User experience of a mobile speaking application with automatic speech recognition for EFL learning. British Journal of Educational Technology, 47(4), 778-786.
Alioon, Y., & Delialioğlu, Ö. (2019). The effect of authentic m‐learning activities on student engagement and motivation. British Journal of Educational Technology, 50(2), 655-668.
Anderson, L. W., & Krathwohl, D. R. (2001). A revision of Bloom’s taxonomy of educational objectives. A Taxonomy for Learning, Teaching and Assessing. Longman, New York.
Ateş, Ö., & Eryilmaz, A. (2011). Effectiveness of hands-on and minds-on activities on students′ achievement and attitudes towards physics. Asia-Pacific Forum on Science Learning & Teaching,
Beghetto, R. A. (2009). In search of the unexpected: Finding creativity in the micromoments of the classroom. Psychology of Aesthetics, Creativity, and the Arts, 3(1), 2.
Bloom, B. S. (1956). Taxonomy of educational objectives. Vol. 1: Cognitive domain. New York: McKay, 20-24.
Bondi, A. B. (2000). Characteristics of scalability and their impact on performance. Proceedings of the 2nd international workshop on Software and performance,
Boote, S. K. (2014). Assessing and understanding line graph interpretations using a scoring rubric of organized cited factors. Journal of Science Teacher Education, 25(3), 333-354.
Brown, B. L. (1998). Applying Constructivism in Vocational and Career Education. Information Series No. 378.
Bryant, C. (2010). A 21st-century art room: The remix of creativity and technology. Art Education, 63(2), 43-48.
Butler, D., & Leahy, M. (2011). Sharing classroom practices: a scalable, sustainable model of teacher professional development for learning in the 21st century. Society for Information Technology & Teacher Education International Conference,
Cam, P. (2006). 20 thinking tools: Collaborative inquiry for the classroom. Aust Council for Ed Research.
Cheng, S.-C., Hwang, W.-Y., Wen, D.-W., Wu, S.-Y., Hsiehe, C.-H., & Chen, C.-Y. (2010). A mobile and Web system with contextual familiarity and its effect on campus English
94
learning. 2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning,
Chin, K.-Y., Lee, K.-F., & Chen, Y.-L. (2019). Effects of a Ubiquitous Guide-Learning System on Cultural Heritage Course Students’ Performance and Motivation. IEEE Transactions on Learning Technologies, 13(1), 52-62.
Chu, H.-C. (2014). Potential negative effects of mobile learning on students′ learning achievement and cognitive load—A format assessment perspective. Journal of Educational Technology & Society, 17(1), 332-344.
Clarke, J., Dede, C., Ketelhut, D. J., & Nelson, B. (2006). A design-based research strategy to promote scalability for educational innovations. Educational Technology, 46(3), 27-36.
Coburn, C. E. (2003). Rethinking scale: Moving beyond numbers to deep and lasting change. Educational researcher, 32(6), 3-12.
Collins, A. (1988). Cognitive Apprenticeship and Instructional Technology. Technical Report.
Council, N. R. (1999). How people learn: Bridging research and practice. National Academies Press.
Creswell, J. W. (2002). Educational research: Planning, conducting, and evaluating quantitative. Prentice Hall Upper Saddle River, NJ.
Croy, W. G. (2009). Location-based learning: Considerations for developing and implementing destination-partnered authentic-experiential learning. Journal of Hospitality & Tourism Education, 21(1), 17-23.
Curry, L. A. (2004). The effects of self-explanations of correct and incorrect solutions on algebra problem-solving performance. Proceedings of the Annual Meeting of the Cognitive Science Society,
Daluba, N. E. (2013). Effect of Demonstration Method of Teaching on Students′ Achievement in Agricultural Science. World Journal of Education, 3(6), 1-7.
Davies, D., & McGregor, D. (2016). Teaching science creatively. Routledge.
Davis, A. B., Sumara, D. J., & Kieren, T. E. (1996). Cognition, co‐emergence, curriculum. Journal of curriculum Studies, 28(2), 151-169.
Davis, D., & Sorrell, J. (1995). Mastery learning in public schools. Educational psychology interactive.
Davtyan, R. (2014). Contextual learning. ASEE 2014 Zone I Conference,
de Jong, T. (2006). Scaffolds for scientific discovery learning. Handling complexity in learning environments: research and theory, 107-128.
Dewey, J. (1986). Experience and education. The Educational Forum,
95
Dirkx, J. M., Amey, M., & Haston, L. (1999). Context in the contextualized curriculum: Adult life worlds as unitary or multiplistic. 18th annual Midwest Research to Practice conference in Adult, Continuing, and Community Education, St. Louis, MS,
Dowd, J. E., Thompson Jr, R. J., Schiff, L. A., & Reynolds, J. A. (2018). Understanding the complex relationship between critical thinking and science reasoning among undergraduate thesis writers. CBE—Life Sciences Education, 17(1), ar4.
Eckersley, R. (1998). Measuring progress: Is life getting better?
Ernest, P. (2010). Reflections on theories of learning. In Theories of mathematics education (pp. 39-47). Springer.
Fleener, M. J. (2016). Re-searching methods in educational research: A transdisciplinary approach. In Complex Dynamical Systems in Education (pp. 9-21). Springer.
Gill, D. (2014). The Educational Scalability of inquiry-Based Learning as a Means to Promote Authentic Student Achievement. Journal of Educational Thought/Revue de la Pensée Educative, 108-123.
Golonka, E. M., Bowles, A. R., Frank, V. M., Richardson, D. L., & Freynik, S. (2014). Technologies for foreign language learning: a review of technology types and their effectiveness. Computer assisted language learning, 27(1), 70-105.
Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior, 1(1), 3-14.
Halpern, D. F. (2013). Thought and knowledge: An introduction to critical thinking. Psychology Press.
Hargreaves, A., & Fink, D. (2000). The Three Dimensions of Reform. Educational leadership, 57(7), 30-33.
Herrington, A., & Herrington, J. (2007). Authentic mobile learning in higher education.
Herrington, J., & Parker, J. (2013). Emerging technologies as cognitive tools for authentic learning. British Journal of Educational Technology, 44(4), 607-615.
Herrington, J., Reeves, T. C., & Oliver, R. (2014). Authentic learning environments. In Handbook of research on educational communications and technology (pp. 401-412). Springer.
Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of science education, 29(11), 1347-1362.
Howard, S. K. (2011). Affect and acceptability: Exploring teachers’ technology-related risk perceptions. Educational Media International, 48(4), 261-272.
96
Hung, C.-Y., Sun, J. C.-Y., & Yu, P.-T. (2015). The benefits of a challenge: student motivation and flow experience in tablet-PC-game-based learning. Interactive learning environments, 23(2), 172-190.
Hwang, G.-J., Tsai, C.-C., & Yang, S. J. (2008). Criteria, strategies and research issues of context-aware ubiquitous learning. Journal of Educational Technology & Society, 11(2), 81-91.
Hwang, G. J., Wu, P. H., Zhuang, Y. Y., & Huang, Y. M. (2013). Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students. Interactive learning environments, 21(4), 338-354.
Hwang, W.-Y., Chen, N.-S., Dung, J.-J., & Yang, Y.-L. (2007). Multiple representation skills and creativity effects on mathematical problem solving using a multimedia whiteboard system. Journal of Educational Technology & Society, 10(2), 191-212.
Hwang, W.-Y., Lin, L.-K., Ochirbat, A., Shih, T. K., & Kumara, W. (2015). Ubiquitous Geometry: Measuring authentic surroundings to support Geometry Learning of the Sixth-Grade students. Journal of Educational Computing Research, 52(1), 26-49.
Hwang, W.-Y., Liu, Y.-F., Purba, S. W. D., & Zhang, Y. Y. (2017). Investigation on the effects of measuring authentic contexts on geometry learning. 2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media),
Hwang, W.-Y., Purba, S. W. D., Liu, Y.-F., Zhang, Y.-Y., & Chen, N.-S. (2018). An Investigation of the Effects of Measuring Authentic Contexts on Geometry Learning Achievement. IEEE Transactions on Learning Technologies.
Hwang, W.-Y., Shadiev, R., & Huang, Y.-M. (2014). Cognitive diffusion model with user-oriented context-to-text recognition for learning to promote high level cognitive processes. In Advanced technologies, embedded and multimedia for human-centric computing (pp. 267-274). Springer.
Hwang, W.-Y., Utami, I. Q., Purba, S. W. D., & Chen, H. S. (2019). Effect of Ubiquitous Fraction App on Mathematics Learning Achievements and Learning Behaviors of Taiwanese Students in Authentic Contexts. IEEE Transactions on Learning Technologies.
Ingram, J. (2018). Agricultural transition: Niche and regime knowledge systems’ boundary dynamics. Environmental innovation and societal transitions, 26, 117-135.
Jaskyte, K. (2008). Employee creativity in US and Lithuanian nonprofit organizations. Nonprofit Management and Leadership, 18(4), 465-483.
Jonassen, D., Davidson, M., Collins, M., Campbell, J., & Haag, B. B. (1995). Constructivism and computer‐mediated communication in distance education. American journal of distance education, 9(2), 7-26.
97
Josiah, M. M. (2013). Effects of Practical Physics Knowledge on Students’ Academic Achievement: A Study of Pankshin Local Government Area of Plateau State, Nigeria. World Educators Forum,
Kaboodi, M., & Jiar, Y. K. (2012). Cognitive and trait creativity in relation with academic achievement. International Journal of Social Science and Humanity, 2(5), 391.
Kali, Y., & Linn, M. C. (2008). Designing effective visualizations for elementary school science. The elementary school journal, 109(2), 181-198.
Khaliliaqdam, S. (2014). ZPD, scaffolding and basic speech development in EFL context. Procedia-Social and Behavioral Sciences, 98, 891-897.
Kibirige, I., & Hodi, T. (2013). Learners’ performance in Physical Sciences using laboratory investigations. International Journal of Educational Sciences, 5(4), 425-432.
Kim, P., Suh, E., & Song, D. (2015). Development of a design-based learning curriculum through design-based research for a technology-enabled science classroom. Educational Technology Research and Development, 63(4), 575-602.
Kim, S.-y., & Kim, M.-r. (2012). Kolb′s learning styles and educational outcome: Using Digital Mind Map as a study tool in Elementary English class. International Journal for Educational Media and Technology, 6(1), 4-13.
Lee, M. C., & Sulaiman, F. (2017). THE EFFECTIVENESS OF PRACTICAL WORK IN PHYSICS TO IMPROVE STUDENTS’ACADEMIC PERFORMANCES. PEOPLE: International Journal of Social Sciences, 3(3).
Li, D. D., & Lim, C. P. (2008). Scaffolding online historical inquiry tasks: A case study of two secondary school classrooms. Computers & Education, 50(4), 1394-1410. https://doi.org/doi:10.1016/j.compedu.2006.12.013
Lin, T.-J., Liang, J.-C., & Tsai, C.-C. (2015). Identifying Taiwanese University Students’ Physics Learning Profiles and Their Role in Physics Learning Self-Efficacy. Research in Science Education, 45(4), 605-624. https://doi.org/doi:10.1007/s11165-014-9440-z
Lombardi, M. M. (2007). Authentic learning for the 21st century: An overview. Educause learning initiative, 1(2007), 1-12.
Lu, S., Park, S., Seo, E., & Zhou, Y. (2008). Learning from mistakes: a comprehensive study on real world concurrency bug characteristics. ACM SIGARCH Computer Architecture News,
Montoye, H. J., Willis III, P. W., Cunningham, D. A., & Keller, J. B. (1969). Heart rate response to a modified Harvard step test: males and females, age 10–69. Research Quarterly. American Association for Health, Physical Education and Recreation, 40(1), 153-162.
98
Nakhimovsky, Y., Miller, A. T., Dimopoulos, T., & Siliski, M. (2010). Behind the scenes of google maps navigation: enabling actionable user feedback at scale. CHI′10 Extended Abstracts on Human Factors in Computing Systems,
Newmann, F. M. (1995). Authentic pedagogy: Standards that boost student performance. Issues in restructuring schools.
Ng, W., & Nguyen, V. T. (2006). Investigating the Integration of Everyday Phenomena and Practical Work in Physics Teaching in Vietnamese High Schools. International Education Journal, 7(1), 36-50.
Nguyen, T.-H., Hwang, W.-Y., Pham, X.-L., & Ma, Z.-H. (2018). User-Oriented EFL Speaking through Application and Exercise: Instant Speech Translation and Shadowing in Authentic Context. Journal of Educational Technology & Society, 21(4), 129-142.
Niederhauser, D. S., Howard, S. K., Voogt, J., Agyei, D. D., Laferriere, T., Tondeur, J., & Cox, M. J. (2018). Sustainability and scalability in educational technology initiatives: Research-informed practice. Technology, Knowledge and Learning, 23(3), 507-523.
Ogata, H., Li, M., Hou, B., Uosaki, N., El-Bishouty, M. M., & Yano, Y. (2011). SCROLL: Supporting to share and reuse ubiquitous learning log in the context of language learning. Research & Practice in Technology Enhanced Learning, 6(2).
Oliver, R., & McLoughlin, C. (2003). Pedagogical designs for. Reusing online resources: A sustainable approach to e-learning, 94.
Powers, D. E., & Kaufman, J. C. (2004). Do standardized tests penalize deep-thinking, creative, or conscientious students? Some personality correlates of Graduate Record Examinations test scores. Intelligence, 32(2), 145-153.
Punch, K. F., & Oancea, A. (2014). Introduction to research methods in education. Sage.
Purba, S. W. D., & Hwang, W.-Y. (2017). Investigation of Learning Behaviors and Achievement of Vocational High School Students Using an Ubiquitous Physics Tablet PC App. Journal of Science Education and Technology, 26(3), 322-331.
Purba, S. W. D., & Hwang, W.-Y. (2018). Investigation of learning behaviors and achievement of simple pendulum for vocational high school students with Ubiquitous-Physics app. Eurasia Journal of Mathematics, Science and Technology Education, 14(7), 2877-2893.
Rauf, R. A. A., Rasul, M. S., Mansor, A. N., Othman, Z., & Lyndon, N. (2013, April 25, 2013). Inculcation of Science Process Skills in a Science Classroom. Asian Social Science, 9(8). https://doi.org/doi:10.5539/ass.v9n8p47
Roth, W.-M., & Bowen, G. M. (2003). When Are Graphs Worth Ten Thousand Words? An Expert-Expert Study. Cognition and Instruction, 21(4), 429-473. https://doi.org/doi:10.1207/s1532690xci2104_3
99
Ruffin, P. (2007). A real fear: It′s more than stage fright, math anxiety can derail academic or professional success, but some scholars are working to help students get over it. Diverse Issues in Higher Education. Findarticle. com (online) http://findarticles. com/p/articles/mi_m0WMX/is_2_24/ai_n18744928.
Runco, M. A. (2007). Achievement sometimes requires creativity. High Ability Studies, 18(1), 75-77.
Shadiev, R., Hwang, W.-Y., Huang, Y.-M., & Liu, T.-Y. (2016). Cognitive diffusion model: facilitating EFL learning in an authentic environment. IEEE Transactions on Learning Technologies, 10(2), 168-181.
Sharples, M., Arnedillo-Sánchez, I., Milrad, M., & Vavoula, G. (2009). Mobile learning. In Technology-enhanced learning (pp. 233-249). Springer.
Shaughnessy, M. F. (1991). The supportive educational environment for creativity.
Songer, N. B., Lee, H. S., & McDonald, S. (2003). Research towards an expanded understanding of inquiry science beyond one idealized standard. Science Education, 87(4), 490-516.
Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (2012). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. In Constructivism in education (pp. 103-126). Routledge.
Starko, A. J. (2013). Creativity in the classroom: Schools of curious delight. Routledge.
Stone, A., & Thames, K. U. (2004). Designing scalable, effective mobile learning for multiple technologies. learning with mobiledevices, 145.
[Record #30 is using a reference type undefined in this output style.]
Supalo, C. A., Humphrey, J. R., Mallouk, T. E., David Wohlers, H., & Carlsen, W. S. (2016). Examining the use of adaptive technologies to increase the hands-on participation of students with blindness or low vision in secondary-school chemistry and physics. Chemistry Education Research and Practice, 17(4), 1174-1189. https://doi.org/doi:10.1039/C6RP00141F
Torrance, E. P. (1966). Torrance tests of creative thinking: Norms-technical manual. Personnel Press.
Tsui, C.-Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In Multiple representations in biological education (pp. 3-18). Springer.
Van Poeck, K., & Östman, L. (2018). Creating space for ‘the political’in environmental and sustainability education practice: A political move analysis of educators’ actions. Environmental Education Research, 24(9), 1406-1423.
100
Varela, F. J., Rosch, E., & Thompson, E. (1993). The embodied mind.
Vavoula, G., Sharples, M., Rudman, P., Meek, J., & Lonsdale, P. (2009). Myartspace: Design and evaluation of support for learning with multimedia phones between classrooms and museums. Computers & Education, 53(2), 286-299.
Vezzali, L., Gocłowska, M. A., Crisp, R. J., & Stathi, S. (2016). On the relationship between cultural diversity and creativity in education: The moderating role of communal versus divisional mindset. Thinking Skills and Creativity, 21, 152-157.
Wang, J.-Y., Wu, H.-K., Chien, S.-P., Hwang, F.-K., & Hsu, Y.-S. (2015). Designing applications for physics learning: Facilitating high school students′ conceptual understanding by using tablet pcs. Journal of Educational Computing Research, 51(4), 441-458.
Wang, M., Shen, R., Novak, D., & Pan, X. (2009). The impact of mobile learning on students′ learning behaviours and performance: Report from a large blended classroom. British Journal of Educational Technology, 40(4), 673-695.
Williams, J. D., Harlow, S. D., & Borgen, J. S. (1971). Creativity, dogmatism, and arithmetic achievement. The Journal of psychology, 78(2), 217-222.
Wilson, M. S., & Miller, C. T. (2015). Using Google Maps web-application to create virtual plant maps for use as an online study tool in plant identification courses. HortTechnology, 25(2), 253-256.
Wingkvist, A. (2009). Understanding scalability and sustainability in mobile learning: A systems development framework Växjö University Press].
Xia, J. C., Fielder, J., & Siragusa, L. (2013). Achieving better peer interaction in online discussion forums: A reflective practitioner case study. Issues in Educational Research, 23(1), 97-113.
指導教授 黃武元(Wu-Yuin Hwang) 審核日期 2020-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明