博碩士論文 107521079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.144.4.81
姓名 黃肜菘(Jung-Sung Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 探究大腦運動皮質厚度變化於缺血性腦中風之預後
(Prognosis of Ischemic Stroke Based on Changes in Thickness of Cerebral Motor Cortex)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將急性缺血性中風患者的三個時期與正常健康志願者之磁振造影(Magnetic Resonance Imaging,MRI)進行影像前處理後,使用以表面為基礎的型態計量學(Surface-based Morphometry,SBM)計算出大腦之腦脊髓液(Cerebrospinal Fluid,CSF)、灰質(Gray Matter,GM)及白質(White Matter,WM)機率圖譜及腦皮質平均厚度。然後,基於感興趣區域(Region of Interest,ROI)方法將大腦分割成360個區域,選取其中的大腦運動皮質區進行皮質厚度的統計、相關性及回歸分析。
本研究在不同條件下使用各種適合的統計方法,例如以曼-惠特尼U檢定分析中風患者與正常受試者間大腦皮質厚度是否具有顯著差異、以魏克森符號排序檢定分析中風患者三個時期之腦皮質厚度是否具有顯著差異。本研究對腦皮質或腦皮質下層中風群(Cortical-subcortical stroke)及腦幹中風群(Brain stem stroke)進行分析,所分析的大腦運動皮質區主要包含以下三個大腦區:體感與運動皮質區(Somatosensory and Motor Cortex)、中央旁小葉及中扣帶皮質區(Paracentral Lobular and Mid Cingulate Cortex)、與前運動皮質區(Premotor Cortex)。斯皮爾曼等級相關係數被用以分析在不同患部之皮質厚度與中風評估量表之間是否有正、負相關性。本研究在回歸分析中使用多元線性回歸及順序邏輯回歸,利用MRI影像所算出的皮質厚度預測中風評估量表分數。期望本研究發展的方法能在臨床醫學上對於醫師判斷病情有所幫助。
摘要(英) This study aimed to analyze the changes of the motor cortex in acute ischemic stroke patients after stroke onset. The Magnetic Resonance Imaging (MRI) data were collected from the recruited patients at three stages:one week, one month, and three months poststroke. MRI data of normal healthy volunteers were also collected. After image preprocessing, the surface-based morphometry (SBM) was used to calculate the probability map of Cerebrospinal Fluid (CSF), Gray Matter (GM) and White Matter (WM) of the brain and the average thickness of the cerebral cortex. The Region of Interest (ROI) Method segments the brain into 360 regions, on which statistical, correlation and regression analysis of the motor cortical thickness were conducted.
A variety of statistical methods appropriate to different conditions were used in the study. The Mann-Whitney U test was used to analyze whether there is a significant difference in cerebral cortical thickness between stroke patients and healthy volunteers. The Wilcoxon signed rank test was used to analyze whether there is significant difference in the cerebral cortical thickness in the three stages at the stroke affected parts in the cortical-subcortical stroke group and the brain stem stroke group. Analysis of the cerebral motor cortex focused in three brain areas, i.e., the Somatosensory and Motor Cortex, the Paracentral Lobular and the Mid Cingulate Cortex, and the Premotor Cortex. Spearman′s correlation analysis was used to reveal possible positive or negative correlations between the change of cortical thickness and the changes of motor assessment scores at various brain regions. The predictability of motor assessment scores based on the MRI-acquired cortical thickness was investigated with multiple linear regression and ordinal logistic regression. The results of this research may be clinically valuable for stroke prognosis.
關鍵字(中) ★ 缺血性中風
★ 磁振造影
★ 大腦皮質厚度
★ 感興趣區域
★ 回歸分析
關鍵字(英) ★ ischemic stroke
★ magnetic resonance imaging
★ cerebral cortex thickness
★ region of interest
★ regression analysis
論文目次 摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
圖 目 錄 ix
表 目 錄 x
第1章 緒論 1
1.1 背景介紹 1
1.2 研究動機 2
1.3 文獻回顧 3
第2章 資料與研究方法 4
2.1 病人數據採集 4
2.2 計算腦皮質厚度方法 6
2.3 腦皮質分區圖譜 8
2.3.1 圖譜介紹 8
2.3.2 圖譜分析與選擇 10
2.4 中風評估量表 12
2.4.1 雷氏修正量表 12
2.4.2 傅格-梅爾評估量表 13
2.4.3 巴氏量表 14
2.4.4 柏格氏平衡量表 15
2.5 實驗步驟與方法 16
第3章 實驗結果與討論 18
3.1 統計分析 18
3.1.1 卡方檢定 18
3.1.2 獨立樣本t檢定 19
3.1.3 曼-惠特尼U檢定 20
3.1.4 魏克森符號排序檢定 26
3.2 斯皮爾曼等級相關係數 30
3.3 回歸分析 34
3.3.1 多元線性回歸 34
3.3.2 順序邏輯回歸 47
3.4 討論 67
第4章 結論與未來展望 70
4.1 結論 70
4.2 未來展望 72
參考文獻 73
附錄一、雷氏修正量表 77
附錄二、傅格-梅爾評估量表 78
附錄三、巴氏量表 83
附錄四、柏格氏平衡量表 85
附錄五、患部為腦幹之皮質厚度與柏格氏平衡量表分數之斯皮爾曼相關性 88
附錄六、患部為腦幹之皮質厚度與巴氏量表分數之斯皮爾曼相關性 90
附錄七、患部為腦幹之皮質厚度與傅格-梅爾評估量表分數之斯皮爾曼相關性 91
附錄八、患部為腦幹之皮質厚度與雷氏修正量表分數之斯皮爾曼相關性 92
附錄九、患部為腦皮質或腦皮質下層之皮質厚度與柏格氏平衡量表分數之斯皮爾曼相關性 94
附錄十、患部為腦皮質或腦皮質下層之皮質厚度與巴氏量表分數之斯皮爾曼相關性 95
附錄十一、患部為腦皮質或腦皮質下層之皮質厚度與傅格-梅爾評估量表分數之斯皮爾曼相關性 96
附錄十二、患部為腦皮質或腦皮質下層之皮質厚度與雷氏修正量表分數之斯皮爾曼相關性 97
附錄十三、患部為腦幹之皮質厚度與柏格氏平衡量表分數之多元線性回歸預測關係圖 99
附錄十四、患部為腦幹之皮質厚度與巴氏量表分數之多元線性回歸預測關係圖 100
附錄十五、患部為腦幹之皮質厚度與雷氏修正量表分數之多元線性回歸預測關係圖 102
附錄十六、患部為腦皮質或腦皮質下層之皮質厚度與巴氏量表分數之多元線性回歸預測關係圖 103
附錄十七、患部為腦皮質或腦皮質下層之皮質厚度與雷氏修正量表分數之多元線性回歸預測關係圖 104
參考文獻 [1] A Computational Anatomy Toolbox for SPM. Available from: http://www.neuro.uni-jena.de/cat/
[2] Farokhian, F., Beheshti, I., Sone, D., & Matsuda, H. (2017). Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy. Frontiers in neurology, 8, 428.
[3] 衛生福利部,108年度死因統計 Available from: https://dep.mohw.gov.tw/DOS/lp-4927-113.html
[4] Zhuang, Y., Zeng, X., Wang, B., Huang, M., Gong, H., & Zhou, F. (2017). Cortical Surface Thickness in the Middle-Aged Brain with White Matter Hyperintense Lesions. Frontiers in aging neuroscience, 9, 225.
[5] Tuladhar, A. M., Reid, A. T., Shumskaya, E., de Laat, K. F., van Norden, A. G., van Dijk, E. J., Norris, D. G., & de Leeuw, F. E. (2015). Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke, 46(2), 425–432.
[6] Milad, M. R., Quinn, B. T., Pitman, R. K., Orr, S. P., Fischl, B., & Rauch, S. L. (2005). Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10706–10711.
[7] Reynolds, S., Carrey, N., Jaworska, N., Langevin, L. M., Yang, X. R., & Macmaster, F. P. (2014). Cortical thickness in youth with major depressive disorder. BMC psychiatry, 14, 83.
[8] Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C., & Bernasconi, N. (2011). Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cerebral cortex (New York, N.Y. : 1991), 21(9), 2147–2157.
[9] Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(38), 8223–8231.
[10] Sowell, E., Peterson, B., Thompson, P. et al. Mapping cortical change across the human life span. Nat Neurosci 6, 309–315 (2003).
[11] de Chastelaine, M., Donley, B. E., Kennedy, K. M., & Rugg, M. D. (2019). Age moderates the relationship between cortical thickness and cognitive performance. Neuropsychologia, 132, 107136.
[12] Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A., Weinberger, D. R., & Mattay, V. S. (2012). Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?. Neurobiology of aging, 33(3), 617.e1–617.e6179.
[13] Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Woods, R. P., Deluca, H., Jancke, L., & Toga, A. W. (2006). Gender effects on cortical thickness and the influence of scaling. Human brain mapping, 27(4), 314–324.
[14] Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., Xu, D., Zhu, H., Thompson, P. M., & Toga, A. W. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral cortex (New York, N.Y. : 1991), 17(7), 1550–1560.
[15] Clarkson, M. J., Cardoso, M. J., Ridgway, G. R., Modat, M., Leung, K. K., Rohrer, J. D., Fox, N. C., & Ourselin, S. (2011). A comparison of voxel and surface based cortical thickness estimation methods. NeuroImage, 57(3), 856–865.
[16] Hutton, C., Draganski, B., Ashburner, J., & Weiskopf, N. (2009). A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage, 48(2), 371–380.
[17] Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage, 24(1), 163–173.
[18] Chung, M. K., Worsley, K. J., Robbins, S., Paus, T., Taylor, J., Giedd, J. N., Rapoport, J. L., & Evans, A. C. (2003). Deformation-based surface morphometry applied to gray matter deformation. NeuroImage, 18(2), 198–213.
[19] Hutton, C., De Vita, E., Ashburner, J., Deichmann, R., & Turner, R. (2008). Voxel-based cortical thickness measurements in MRI. NeuroImage, 40(4), 1701–1710.
[20] Dahnke, R., Yotter, R. A., & Gaser, C. (2013). Cortical thickness and central surface estimation. NeuroImage, 65, 336–348.
[21] Acosta, O., Bourgeat, P., Zuluaga, M. A., Fripp, J., Salvado, O., Ourselin, S., & Alzheimer′s Disease Neuroimaging Initiative (2009). Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps. Medical image analysis, 13(5), 730–743.
[22] Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.
[23] Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in neuroscience, 6, 171.
[24] Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.
[25] Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.
[26] Klein, D., Mok, K., Chen, J. K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and language, 131, 20–24.
[27] Lillie, E. M., Urban, J. E., Lynch, S. K., Weaver, A. A., & Stitzel, J. D. (2016). Evaluation of Skull Cortical Thickness Changes With Age and Sex From Computed Tomography Scans. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 31(2), 299–307.
[28] Im, K., Lee, J. M., Yoon, U., Shin, Y. W., Hong, S. B., Kim, I. Y., Kwon, J. S., & Kim, S. I. (2006). Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Human brain mapping, 27(12), 994–1003.
[29] Jiang, J., Zhu, W., Shi, F., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Thick visual cortex in the early blind. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(7), 2205–2211.
[30] Brodtmann, A., Pardoe, H., Li, Q., Lichter, R., Ostergaard, L., & Cumming, T. (2012). Changes in regional brain volume three months after stroke. Journal of the neurological sciences, 322(1-2), 122–128.
[31] Li, Q., Pardoe, H., Lichter, R., Werden, E., Raffelt, A., Cumming, T., & Brodtmann, A. (2014). Cortical thickness estimation in longitudinal stroke studies: A comparison of 3 measurement methods. NeuroImage. Clinical, 8, 526–535.
[32] Seiger, R., Ganger, S., Kranz, G. S., Hahn, A., & Lanzenberger, R. (2018). Cortical Thickness Estimations of FreeSurfer and the CAT12 Toolbox in Patients with Alzheimer′s Disease and Healthy Controls. Journal of neuroimaging : official journal of the American Society of Neuroimaging, 28(5), 515–523.
[33] Righart, R., Schmidt, P., Dahnke, R., Biberacher, V., Beer, A., Buck, D., Hemmer, B., Kirschke, J. S., Zimmer, C., Gaser, C., & Mühlau, M. (2017). Volume versus surface-based cortical thickness measurements: A comparative study with healthy controls and multiple sclerosis patients. PloS one, 12(7), e0179590.
[34] Rapado-Castro, M., Whittle, S., Pantelis, C., Thompson, A., Nelson, B., Ganella, E. P., Lin, A., Reniers, R., McGorry, P. D., Yung, A. R., Wood, S. J., & Bartholomeusz, C. F. (2020). Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk?. Schizophrenia research, 224, 116–125.
[35] Adrian Keith Ball, David C. Rye, David Silvera-Tawil, and Mari Velonaki. 2017. How should a robot approach two people? J. Hum.-Robot Interact. 6, 3 (December 2017), 71–91.
[36] Lopez-Larson, M. P., Bogorodzki, P., Rogowska, J., McGlade, E., King, J. B., Terry, J., & Yurgelun-Todd, D. (2011). Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behavioural brain research, 220(1), 164–172.
[37] Sun, P., Lou, W., Liu, J., Shi, L., Li, K., Wang, D., Mok, V. C., & Liang, P. (2019). Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients: a pilot study. Aging, 11(22), 10000–10015.
[38] Yang, K., Yang, Q., Niu, Y., Fan, F., Chen, S., Luo, X., Tan, S., Wang, Z., Tong, J., Yang, F., Le, T. M., Li, C. R., & Tan, Y. (2020). Cortical Thickness in Alcohol Dependent Patients With Apathy. Frontiers in psychiatry, 11, 364.
[39] Morey, R. A., Davis, S. L., Haswell, C. C., Naylor, J. C., Kilts, J. D., Szabo, S. T., Shampine, L. J., Parke, G. J., Sun, D., Swanson, C. A., Wagner, H. R., Mid-Atlantic MIRECC Workgroup, & Marx, C. E. (2019). Widespread Cortical Thickness Is Associated With Neuroactive Steroid Levels. Frontiers in neuroscience, 13, 1118.
[40] Greenland S. (1994). Alternative models for ordinal logistic regression. Statistics in medicine, 13(16), 1665–1677.
[41] Jouvent, E., Reyes, S., Mangin, J. F., Roca, P., Perrot, M., Thyreau, B., Hervé, D., Dichgans, M., & Chabriat, H. (2011). Apathy is related to cortex morphology in CADASIL. A sulcal-based morphometry study. Neurology, 76(17), 1472–1477.
[42] Das, S., & Rahman, R. M. (2011). Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh. Nutrition journal, 10, 124.
[43] Nijrolder, I., van der Windt, D., Twisk, J. W., & van der Horst, H. E. (2010). Fatigue in primary care: longitudinal associations with pain. Pain, 150(2), 351–357.
[44] Abreu, M. N., Siqueira, A. L., Cardoso, C. S., & Caiaffa, W. T. (2008). Ordinal logistic regression models: application in quality of life studies. Cadernos de saude publica, 24 Suppl 4, s581–s591.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2021-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明