參考文獻 |
[1] A Computational Anatomy Toolbox for SPM. Available from: http://www.neuro.uni-jena.de/cat/
[2] Farokhian, F., Beheshti, I., Sone, D., & Matsuda, H. (2017). Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy. Frontiers in neurology, 8, 428.
[3] 衛生福利部,108年度死因統計 Available from: https://dep.mohw.gov.tw/DOS/lp-4927-113.html
[4] Zhuang, Y., Zeng, X., Wang, B., Huang, M., Gong, H., & Zhou, F. (2017). Cortical Surface Thickness in the Middle-Aged Brain with White Matter Hyperintense Lesions. Frontiers in aging neuroscience, 9, 225.
[5] Tuladhar, A. M., Reid, A. T., Shumskaya, E., de Laat, K. F., van Norden, A. G., van Dijk, E. J., Norris, D. G., & de Leeuw, F. E. (2015). Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke, 46(2), 425–432.
[6] Milad, M. R., Quinn, B. T., Pitman, R. K., Orr, S. P., Fischl, B., & Rauch, S. L. (2005). Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10706–10711.
[7] Reynolds, S., Carrey, N., Jaworska, N., Langevin, L. M., Yang, X. R., & Macmaster, F. P. (2014). Cortical thickness in youth with major depressive disorder. BMC psychiatry, 14, 83.
[8] Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C., & Bernasconi, N. (2011). Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cerebral cortex (New York, N.Y. : 1991), 21(9), 2147–2157.
[9] Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(38), 8223–8231.
[10] Sowell, E., Peterson, B., Thompson, P. et al. Mapping cortical change across the human life span. Nat Neurosci 6, 309–315 (2003).
[11] de Chastelaine, M., Donley, B. E., Kennedy, K. M., & Rugg, M. D. (2019). Age moderates the relationship between cortical thickness and cognitive performance. Neuropsychologia, 132, 107136.
[12] Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A., Weinberger, D. R., & Mattay, V. S. (2012). Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?. Neurobiology of aging, 33(3), 617.e1–617.e6179.
[13] Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Woods, R. P., Deluca, H., Jancke, L., & Toga, A. W. (2006). Gender effects on cortical thickness and the influence of scaling. Human brain mapping, 27(4), 314–324.
[14] Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., Xu, D., Zhu, H., Thompson, P. M., & Toga, A. W. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral cortex (New York, N.Y. : 1991), 17(7), 1550–1560.
[15] Clarkson, M. J., Cardoso, M. J., Ridgway, G. R., Modat, M., Leung, K. K., Rohrer, J. D., Fox, N. C., & Ourselin, S. (2011). A comparison of voxel and surface based cortical thickness estimation methods. NeuroImage, 57(3), 856–865.
[16] Hutton, C., Draganski, B., Ashburner, J., & Weiskopf, N. (2009). A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage, 48(2), 371–380.
[17] Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage, 24(1), 163–173.
[18] Chung, M. K., Worsley, K. J., Robbins, S., Paus, T., Taylor, J., Giedd, J. N., Rapoport, J. L., & Evans, A. C. (2003). Deformation-based surface morphometry applied to gray matter deformation. NeuroImage, 18(2), 198–213.
[19] Hutton, C., De Vita, E., Ashburner, J., Deichmann, R., & Turner, R. (2008). Voxel-based cortical thickness measurements in MRI. NeuroImage, 40(4), 1701–1710.
[20] Dahnke, R., Yotter, R. A., & Gaser, C. (2013). Cortical thickness and central surface estimation. NeuroImage, 65, 336–348.
[21] Acosta, O., Bourgeat, P., Zuluaga, M. A., Fripp, J., Salvado, O., Ourselin, S., & Alzheimer′s Disease Neuroimaging Initiative (2009). Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps. Medical image analysis, 13(5), 730–743.
[22] Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.
[23] Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in neuroscience, 6, 171.
[24] Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.
[25] Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.
[26] Klein, D., Mok, K., Chen, J. K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and language, 131, 20–24.
[27] Lillie, E. M., Urban, J. E., Lynch, S. K., Weaver, A. A., & Stitzel, J. D. (2016). Evaluation of Skull Cortical Thickness Changes With Age and Sex From Computed Tomography Scans. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 31(2), 299–307.
[28] Im, K., Lee, J. M., Yoon, U., Shin, Y. W., Hong, S. B., Kim, I. Y., Kwon, J. S., & Kim, S. I. (2006). Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Human brain mapping, 27(12), 994–1003.
[29] Jiang, J., Zhu, W., Shi, F., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Thick visual cortex in the early blind. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(7), 2205–2211.
[30] Brodtmann, A., Pardoe, H., Li, Q., Lichter, R., Ostergaard, L., & Cumming, T. (2012). Changes in regional brain volume three months after stroke. Journal of the neurological sciences, 322(1-2), 122–128.
[31] Li, Q., Pardoe, H., Lichter, R., Werden, E., Raffelt, A., Cumming, T., & Brodtmann, A. (2014). Cortical thickness estimation in longitudinal stroke studies: A comparison of 3 measurement methods. NeuroImage. Clinical, 8, 526–535.
[32] Seiger, R., Ganger, S., Kranz, G. S., Hahn, A., & Lanzenberger, R. (2018). Cortical Thickness Estimations of FreeSurfer and the CAT12 Toolbox in Patients with Alzheimer′s Disease and Healthy Controls. Journal of neuroimaging : official journal of the American Society of Neuroimaging, 28(5), 515–523.
[33] Righart, R., Schmidt, P., Dahnke, R., Biberacher, V., Beer, A., Buck, D., Hemmer, B., Kirschke, J. S., Zimmer, C., Gaser, C., & Mühlau, M. (2017). Volume versus surface-based cortical thickness measurements: A comparative study with healthy controls and multiple sclerosis patients. PloS one, 12(7), e0179590.
[34] Rapado-Castro, M., Whittle, S., Pantelis, C., Thompson, A., Nelson, B., Ganella, E. P., Lin, A., Reniers, R., McGorry, P. D., Yung, A. R., Wood, S. J., & Bartholomeusz, C. F. (2020). Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk?. Schizophrenia research, 224, 116–125.
[35] Adrian Keith Ball, David C. Rye, David Silvera-Tawil, and Mari Velonaki. 2017. How should a robot approach two people? J. Hum.-Robot Interact. 6, 3 (December 2017), 71–91.
[36] Lopez-Larson, M. P., Bogorodzki, P., Rogowska, J., McGlade, E., King, J. B., Terry, J., & Yurgelun-Todd, D. (2011). Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behavioural brain research, 220(1), 164–172.
[37] Sun, P., Lou, W., Liu, J., Shi, L., Li, K., Wang, D., Mok, V. C., & Liang, P. (2019). Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients: a pilot study. Aging, 11(22), 10000–10015.
[38] Yang, K., Yang, Q., Niu, Y., Fan, F., Chen, S., Luo, X., Tan, S., Wang, Z., Tong, J., Yang, F., Le, T. M., Li, C. R., & Tan, Y. (2020). Cortical Thickness in Alcohol Dependent Patients With Apathy. Frontiers in psychiatry, 11, 364.
[39] Morey, R. A., Davis, S. L., Haswell, C. C., Naylor, J. C., Kilts, J. D., Szabo, S. T., Shampine, L. J., Parke, G. J., Sun, D., Swanson, C. A., Wagner, H. R., Mid-Atlantic MIRECC Workgroup, & Marx, C. E. (2019). Widespread Cortical Thickness Is Associated With Neuroactive Steroid Levels. Frontiers in neuroscience, 13, 1118.
[40] Greenland S. (1994). Alternative models for ordinal logistic regression. Statistics in medicine, 13(16), 1665–1677.
[41] Jouvent, E., Reyes, S., Mangin, J. F., Roca, P., Perrot, M., Thyreau, B., Hervé, D., Dichgans, M., & Chabriat, H. (2011). Apathy is related to cortex morphology in CADASIL. A sulcal-based morphometry study. Neurology, 76(17), 1472–1477.
[42] Das, S., & Rahman, R. M. (2011). Application of ordinal logistic regression analysis in determining risk factors of child malnutrition in Bangladesh. Nutrition journal, 10, 124.
[43] Nijrolder, I., van der Windt, D., Twisk, J. W., & van der Horst, H. E. (2010). Fatigue in primary care: longitudinal associations with pain. Pain, 150(2), 351–357.
[44] Abreu, M. N., Siqueira, A. L., Cardoso, C. S., & Caiaffa, W. T. (2008). Ordinal logistic regression models: application in quality of life studies. Cadernos de saude publica, 24 Suppl 4, s581–s591. |