博碩士論文 107521102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.147.64.187
姓名 吳育承(YU-CHENG WU)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於可重組式微波元件之測速雷達系統
(Speed Measurement Radar System Based on a Reconfigurable Microwave Circuit)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-21以後開放)
摘要(中) 本論文提出以可重組式微波元件所實現之測速雷達系統,目標為利用簡單的電路架構整合雷達測速與偵測結果傳送兩個子系統,提供一個低成本的短距離速度監測方案。首先,本研究提出一個具有三種功能的可重組式微波元件,中心頻率設計於 2.45 GHz,藉由控制二極體開關改變微帶線的連接方式,可切換成分支線耦合器、帶通濾波器與帶拒濾波器三種不同電路功能,並實作於印刷電路板上。其整體電路面積為 31.1 mm × 34.6 mm,電氣尺寸在中心頻率 2.45 GHz 下為 0.4785 λg × 0.5324 λg。而後,據以發展成一簡易都卜勒測速雷達系統,當此 2.45 GHz 可重組式微波元件操作在分支線耦合器模式下,具有測速雷達的功能,有15 dBm的發射功率,20 dBi的發射天線增益,在 200 cm 的偵測距離內提供 100 mm/s 至 270 mm/s 的速度監控,且誤差低於 7 %。而當可重組式微波元件操作於帶通與帶拒濾波器模式下,則具有調變發射機的功能,得以開關鍵控將速度資訊通過天線發送,再以一簡易接收模組進行速度的解調。論文中包含此一基於可重組式微波元件之測速雷達系統的工作原理與設計流程,並以實測驗證系統效能。
摘要(英) In this study, a compact radar system for speed measurement based on a novel reconfigurable microwave circuit is proposed. Specifically, to provide a low-cost solution for short-range speed monitoring, a Doppler radar and a transmission module for the detected speed are integrated in a simple circuit architecture. First, a 2.45-GHz reconfigurable microwave circuit with three circuit functions is proposed. By using p-i-n diode switches to change the connections of microstrip lines, the proposed reconfigurable microwave circuit can be switched between three different circuit function including branch-line coupler, bandpass filter and bandstop filter. It is implemented on a printed circuit broad with a circuit size of 31.1 mm × 34.6 mm, and the corresponding electrical size is around 0.4785 λg × 0.5324 λg at 2.45 GHz. It is then developed into a Doppler radar for speed-measurement. When the reconfigurable microwave circuit is operated in the branch-line coupler mode, it has the function of a Doppler radar with 15-dBm transmitting power and 20-dBi antenna gain. It can provide speed monitoring from 100 mm/s to 270 mm/s within the range of 200 cm, and the error is less than 7 %. When the reconfigurable microwave circuit is switched between the bandpass and bandstop filter mode, the system becomes a wireless transmitter and send the detected speed information through the on-off keying modulation scheme. A simple wireless receiver module will then demodulate the speed information. This thesis includes the operation principle and design flow of this compact radar system, and the system performance are carefully verified by measurement.
關鍵字(中) ★ 雷達
★ 可重組式微波元件
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 3
第二章 可重組式微波元件 4
2.1 電路架構與工作原理 4
2.2 電路設計與實作 6
2.2.1 射頻開關設計 7
2.2.2 功能一 分支線耦合器 13
2.2.3 功能二 帶通濾波器 17
2.2.4 功能三 帶拒濾波器 18
2.3 結果與文獻比較 20
第三章 測速雷達系統暨發射機設計 23
3.1電路架構 23
3.2 設計原理 25
3.3 雷達系統射頻電路實作 29
3.4 基頻訊號處理程式編寫 34
3.5 結果與討論 40
第四章 接收機模組設計 41
4.1 電路架構及原理 41
4.2 整流天線設計 42
4.2.1 天線設計 42
4.2.2 整流器設計 45
4.3 程式編寫 48
4.4 實測結果與討論 52
第五章 系統整合測試 54
5.1 待測物設計 54
5.2 系統量測 55
5.3 結果與討論 62
第六章 結論與未來展望 63
參考文獻 65
參考文獻 [1] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring,” IEEE Trans. on Microwave Theory and Techniques, Vol. 61, No. 5, May 2013
[2] F. Alimenti, V. Palazzi, C. Mariotti, M. Virili, G. Orecchini, S.Bonafoni, L. Roselli, and P. Mezzanotte, “A 24-GHz radar front-end integrated on a multilayer cellulose-based substrate for Doppler radar sensors,” MDPI Sens., vol. 17, no. 9, pp. 1–17, 2017
[3] T. H. Ho and S. J. Chung, “Design and measurement of a Doppler radar with new quadrature hybrid mixer for vehicle applications,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 1, pp. 1–8, Jan. 2010.
[4] C. Y. Kim, J. G. Kim, D. H. Baek, and S. Hong, “A circularly polarized balanced radar front-end with a single antenna for 24-GHz radar applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 2, pp.293–297, Feb. 2009.
[5] S.-G. Kim, H. Kim, Y. Lee, I.-S. Kho, and J.-G. Yook, “5.8 GHz vital signal sensing Doppler radar using isolation-improved branch-line coupler,” in Proc. 3rd Eur. Radar Conf., Sep. 2006, pp. 249–252.
[6] Y. He, C. Gu, H. Ma, J. Zhu, and G. V. Eleftheriades, “Miniaturized circularly polarized Doppler radar for human vital sign detection,” IEEE Trans. Antennas Propagation, vol. 67, no. 11, pp. 7022–7030, Nov. 2019
[7] H. N. Chu, H. Liao, G. Li and T. Ma, “Novel phase reconfigurable synthesized transmission line and its application to reconfigurable hybrid coupler,” Proc. 47nd Eur. Micro. Conf., pp. 1077-1080, 2017.
[8] 莊競輝, “單頻和雙頻帶可重組式微波被動元件”, 碩士論文 國立中央大學, Oct 2020.
[9] T. Yang and G. M. Rebeiz, “Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls,” IEEE Trans. Microw.Theory Techn., vol. 65, no. 7, pp. 2288–2297, Jul. 2017.
[10] X. Zhu, T. Yang, P.-L. Chi, and R. Xu, “Novel reconfigurable filtering rat-race coupler, branch-line coupler, and multiorder bandpass filter with frequency, bandwidth, and power division ratio control,” IEEE Trans. Microw. Theory Techn., early access, doi: 10.1109/TMTT.2019.2959769.
[11] 鄭廷翰, “可重組式微波被動元件,” 碩士論文 國立中央大學, June 2018.
[12] Battiboia, S.; Caliumi, A.; Catena, S.; Marazzi, E.; Masini, L. “Low-Power X-Band Radar for Indoor Burglar Alarms,” IEEE Trans. Microw. Theory Tech. 1995, 43, 1710–1714.
[13] A. D. Droitcour, O. B. Lubecke et al., “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech. vol. 52, no. 3, pp. 838-848, March 2004.
[14] F. Hwang, Y. Shen, and S. H. Jayaram, “Low-ripple compact highvoltage DC power supply,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp.1139–1145, Sep./Oct. 2006.
[15] S. Fan et al., “A 2.45-GHz rectifier-booster regulator with impedance matching converters for wireless energy harvesting,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 9, pp. 3833–3843, Sep. 2019.
[16] M. Pozar, Microwave Engineering, Fourth, John Wiley & Sons, Inc., 2011.
[17] https://www.rohde-schwarz.com/us/product/sma100a-productstartpage_63493-7566.html
[18] https://www.tupavco.com/products/panel-antenna-24ghz-wifi-20dbi-wireless-outdoor-18-directional-n-f
[19] 台灣半導體研究中心(TSRI)的晶片設計實作課程-RF PCB 實作課程
[20] https://www.minicircuits.com/pdfs/ZX05-43MH-S+.pdf
[21] https://github.com/kosme/arduinoFFT
[22] Y. Li, W. Li, L. Yuan and L. Yang, "Research on RCS characteristic of three kinds of metal plate," 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, 2012, pp. 875-878, doi: 10.1109/CCIS.2012.6664301.
指導教授 林祐生 審核日期 2021-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明