博碩士論文 107323015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.88.185.100
姓名 李偉瑜(Wei-Yu Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 圓柱型齒輪之動力刮削刀具輪廓設計
(Design of Power Skiving Cutter for Cylindrical Gears)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 齒輪為重要的動力傳輸元件。外齒輪常以滾齒加工製造,內齒輪則多用鉋齒加工製造,但鉋齒加工效率較慢。動力刮削不論內、外、正或螺旋齒輪皆可加工,在加工內齒輪時效率高於鉋齒加工,同時加工精度與刨齒相當,因此動力刮削在製造內齒輪具有較大的優勢與潛力。本論文將針對動力刮削加工圓柱齒輪之齒形誤差進行研究與探討。參考實務上製造刀具之方法及工件精度之規範,藉由數學推導並配合數值計算與最佳化方法設計出符合實務需求之動力刮削刀具。首先從動力刮削刀具齒形開始研究。參考磨輪研磨刀具之運動關係推導刀具齒形與刃口線,根據動力刮削運動關係推導其創成之工件齒形,並加入 ISO 規範計算工件齒形精度,分析動力刮削加工內、外齒輪之誤差與精度。為使工件齒形可符合 ISO 7 級,藉由改變磨輪輪廓曲線得到可加工出高精度齒輪之刀具刃口線,而後探討該刀具在不同工件參數與不同刀具截面下對工件齒形之影響。在不同工件參數與刀具截面下,其加工之工件齒輪誤差會有所不同,為提升刀具重磨量,使刀具更符合實務需求,於刀具與工件對滾關係中加入補償角,藉此提升工件精度與降低齒形誤差。最終得到適用於加工不同工件螺旋角且工件精度與刀具重磨量符合市售要求之動力刮削刀具。
摘要(英) Gears are important power transmission elements. External gears are often manufactured by hobbing, while internal gears are mostly manufactured by gear shaping, which has a lower efficiency. Power skiving can produce internal gears and external gears. The efficiency of producing internal gears by power skiving is much higher than that by gear shaping, and the machining accuracy is equivalent. Therefore, power skiving has certain advantages and potential in manufacturing internal gears. This thesis studies the tooth profile error of cylindrical gear manufactured by power skiving. Based on the practical method of manufacturing tools, the mathematical model was derived. Numerical calculation and optimization technique were used to design power skiving tool.
First, the cutter profile of the power skiving was derived according to the motion relationship of the generating grinding method. The gear tooth profile was derived according to the power skiving mechanism. The ISO standard was used to calculate the workpiece tooth quality, analyze the error and quality of the internal and external gears which were generated by power skiving. In order to make the tooth profile of the workpiece conform to ISO grade 7, the cutting edge which generates the high-precision gear can be obtained by changing the curve of the grinding wheel. Then the influences of the tool on the tooth profile of the workpiece under various gear design parameters and various tool sections were discussed. In order to increase the amount of cutter resharpening and cutter useful life, a compensation method is proposed to the rolling relationship between the cutter and the workpiece. Finally, a power skiving tool that is suitable for processing different helix angles, and tool resharpening amount was successfully proposed.
關鍵字(中) ★ 動力刮削
★ 圓柱型齒輪
★ 刀具設計
★ 最佳化
關鍵字(英) ★ power skiving
★ cylindrical gears
★ cutter design
★ optimization
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
符號對照表 xiii
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 鉋刀與鉋齒加工簡介 1
1.2.2 鉋齒刀研究與文獻回顧 3
1.2.3 動力刮削技術發展 7
1.2.4 動力刮削文獻回顧 9
1.2.5 動力刮削廠商與機臺介紹 11
1.3 研究目的 12
1.4 論文架構 13
第2章 動力刮削刀具之齒面數學模式 14
2.1 前言 14
2.2 磨輪研磨之假想齒條刀數學模式 14
2.3 動力刮削刀具齒面數學模式 18
2.4 動力刮削刀具刃口面數學模式 19
2.5 數值範例 23
第3章 動力刮削創成螺旋內、外齒輪之齒面數學模式 25
3.1 前言 25
3.2 動力刮削運動關係與齒面數學模式 25
3.3 數值範例 28
3.3.1 內齒輪 28
3.3.2 外齒輪 30
第4章 工件齒形誤差與精度分析 31
4.1 前言 31
4.2 齒形誤差 31
4.2.1 漸開線齒形數學模式 32
(1) 外齒輪 32
(2) 內齒輪 34
4.2.2 齒形誤差計算方式 35
4.3 工件齒形精度計算方式 35
4.4 數值範例 37
4.4.1 內齒輪 37
4.4.2 外齒輪 40
4.5 小結 41
第5章 動力刮削刀具之最佳化分析 42
5.1 前言 42
5.2 最佳化概述 42
5.3 刀具齒形最佳化 45
5.3.1 磨輪曲線最佳化 45
5.3.2 磨輪曲線最佳化分析 47
(1) Case 1-內齒輪分析 47
(2) Case 1-外齒輪分析 53
(3) Case 2-內齒輪分析 59
5.4 刀具重磨量最佳化 64
5.4.1 補償角最佳化 65
(1) Case 1-內齒輪補償角最佳化 66
(2) Case 1-外齒輪補償角最佳化 69
(3) Case 2-內正齒輪補償角最佳化 71
5.4.2 補償角最佳化之重磨量分析 73
(1) Case 1-內齒輪重磨量分析 73
(2) Case 1-外齒輪重磨量分析 74
(3) Case 2-內正齒輪重磨量分析 75
5.5 小結 76
第6章 結論與未來工作 77
6.1 結論 77
6.2 未來工作 78
參考文獻 79
附錄A 補償角最佳化結果 84
參考文獻 [1] F. L. Litvin, Theory of Gearing, Washinton D.C.:NASA Reference Publication 1212, 1989.
[2] F. L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, Second Edition. Cambridge:Cambridge Univerisity Press, New York, 2004.
[3] W. L. Janninck, “Shaper Cutters-Design & Applications Part 1,” Gear Technology, Mar./Apr., pp. 35-44, 1990. [Online]. Available: https://www.geartechnology.com/articles/0390/Shaper_Cutters-Design_~amp;_Applications_Part_1/. [Accessed Sept. 29, 2020].
[4] W. L. Janninck, “Shaper Cutters - Design & Application - Part 2,” Gear Technology, May/June, pp. 38-45, 1990. [Online]. Available: https://www.geartechnology.com/articles/0590/Shaper_Cutters_-_Design_~amp;_Application_-_Part_2/. [Accessed Sept. 29, 2020].
[5] Pfauter-Maag Cutting Tools, “Isoform Shaper Cutters Facts and Features...,” Batom Co., Ltd.
[6] R. N. Green and H. H. Mabie, “Determination of static tooth stresses in nonstandard spur gears cut by pinion cutter,” Mech. Mach. Theory, vol. 15, no. 6, pp. 507-514, 1980.
[7] R. N. Green and H. H. Mabie, “Determination of pinion-cutter offsets required to produce nonstandard spur gears with teeth of equal strength,” Mech. Mach. Theory, vol. 15, no. 6, pp. 491-506, 1980.
[8] S. M. Vijayakar, B. Sarkar, D. R. Houser, “Gear Tooth Profile Determination From Arbitrary Rack Geometry,” Gear Technology, Nov/Dec., pp. 18-30, 1988. [Online]. Available: https://www.geartechnology.com/articles/1188/Gear_Tooth_Profile_Determination_From_Arbitrary_Rack_Geometry/. [Accessed Sept. 29, 2020].
[9] C.-B. Tsay, W.-Y. Liu, and Y.-C. Chen, “Spur gear generation by shaper cutters,” Journal of Materials Processing Technology, vol. 104, no. 3, pp. 271-279, 2000.
[10] 莊曄,「齒輪鉋齒加工參數研究」,碩士,機械系,國立中正大學,嘉義縣,2004。
[11] C.-L. Huang, Z.-H. Fong, S.-D. Chen, and K.-R. Chang, “Profile correction of a helical gear shaping cutter using the lengthwise-reciprocating grinding method,” Mech. Mach. Theory, vol. 44, no. 2, pp. 401-411, 2009.
[12] C.-L. Huang, Z.-H. Fong, S.-D. Chen, and K.-R. Chang, “Novel Third-Order Correction for a Helical Gear Shaping Cutter Made by a Lengthwise-Reciprocating Grinding Process,” Journal of Mechanical Design, vol. 131, no. 5, 2009.
[13] C.-L. Huang and Z.-H. Fong, “Modified-Roll Profile Correction for a Gear Shaping Cutter Made by the Lengthwise-Reciprocating Grinding Process,” Journal of Mechanical Design, vol. 133, no. 4, 2011.
[14] W. v. Pittler and G. Adams, “Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs,” Deutsche Patentschrift, no. 243514, 1910.
[15] K. Nishijima and M. Kojima, “Skiving cutter device for use in cutting internal spur gear,” United States Patent, no. 3931754, 1976.
[16] K. Nishijima and M. Kojima, “Skiving cutter for use in cutting internal spur gear,” United States Patent, no. 4066001, 1978.
[17] M. Kojima and K. Nishijima, “Gear Skiving of Involute Internal Spur Gear : (Part 1. On the Tooth Profile),” Bulletin of JSME, vol. 17, no. 106, pp. 511-518, 1974.
[18] F. Seibicke and H. Müller, “Good Things Need Some Time,” GEARSolutions, Aug., pp. 74-80, 2013. [Online]. Available: https://gearsolutions.com/features/good-things-need-some-time/. [Accessed Sept. 16, 2020].
[19] H. J. Stadtfeld, “Power Skiving of Cylindrical Gears on Different Machine Platforms,” Gear Technology, Jan./Feb., pp. 52-62, 2014. [Online]. Available: https://www.geartechnology.com/articles/0114/Power_Skiving_of_Cylindrical_Gears_on_Different_Machine_Platforms/. [Accessed Sept. 16, 2020].
[20] N. Bylund, “Understanding the Basic Principles of Power Skiving,” GEARSolutions, Apr. pp. 42-46, 2017. [Online]. Available: https://gearsolutions.com/features/understanding-the-basic-principles-of-power-skiving/. [Accessed Sept. 29, 2020].
[21] J.-L. Feutren, “Worm Screw High-Speed Manufacturing,” GEARSolutions, June, pp. 32-39, 2017. [Online]. Available: https://gearsolutions.com/features/worm-screw-high-speed-manufacturing/. [Accessed Sept. 29, 2020].
[22] E. Guo, R. Hong, X. Huang, and C. Fang, “Research on the design of skiving tool for machining involute gears,” Journal of Mechanical Science and Technology, vol. 28, no. 12, pp. 5107-5115, 2014.
[23] E. Guo, R. Hong, X. Huang, and C. Fang, “A correction method for power skiving of cylindrical gears lead modification,” Journal of Mechanical Science and Technology, vol. 29, no. 10, pp. 4379-4386, 2015.
[24] E. Guo, R. Hong, X. Huang, and C. Fang, “Research on the cutting mechanism of cylindrical gear power skiving,” The International Journal of Advanced Manufacturing Technology, vol. 79, no. 1, pp. 541-550, 2015.
[25] Z. Guo, S.-M. Mao, X.-E. Li, and Z.-Y. Ren, “Research on the theoretical tooth profile errors of gears machined by skiving,” Mech. Mach. Theory, vol. 97, pp. 1-11, 2016.
[26] Z. Guo, S.-M. Mao, X.-F. Du, and Z.-Y. Ren, “Influences of tool setting errors on gear skiving accuracy,” The International Journal of Advanced Manufacturing Technology, vol. 91, no. 9, pp. 3135-3143, 2017.
[27] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, and M. Krömer, “Technological and Simulative Analysis of Power Skiving,” Procedia CIRP, vol. 50, pp. 773-778, 2016.
[28] 李昀浚,「漸開線型圓柱齒輪之強力刮齒數學模式」,碩士,機械工程系,國立臺灣科技大學,台北市,2016。
[29] Y.-P. Shih and Y.-J. Li, “A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture,” Journal of Mechanical Design, vol. 140, no. 4, 2018.
[30] P. Wang, J. Li, and Y.-Q. Jin, “A study on the design of slicing cutter for cycloid gear based on conjugate theory,” The International Journal of Advanced Manufacturing Technology, vol. 98, no. 5, pp. 2057-2068, 2018.
[31] F. Zheng, M. Zhang, W. Zhang, and X. Guo, “Research on the Tooth Modification in Gear Skiving,” Journal of Mechanical Design, vol. 140, no. 8, 2018.
[32] K. Jia, S. Zheng, J. Guo, and J. Hong, “A surface enveloping-assisted approach on cutting edge calculation and machining process simulation for skiving,” The International Journal of Advanced Manufacturing Technology, vol. 100, no. 5, pp. 1635-1645, 2019.
[33] N. Tapoglou, “Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation,” The International Journal of Advanced Manufacturing Technology, vol. 100, no. 5, pp. 1779-1785, 2019.
[34] PITTLER, “PITTLER SKIVELINE - THE GEAR CUTTING MACHINE THAT CAN DO MORE THAN JUST GEAR CUTTING,” PITTLER, [Online]. Available: http://pittler.dvs-gruppe.com/index.php?id=1096&L=1. [Accessed Aug. 04, 2020].
[35] PITTLER, “PITTLER SkiveLine - Efficiently geared. Completely machined.,” PITTLER, [Online]. Available: http://pittler.dvs-gruppe.com/uploads/tx_xpctypedownloadssimple/PITTLER-SkiveLine-EN.pdf. [Accessed Aug. 04, 2020].
[36] Gleason, “Power Skiving,” Gleason, [Online]. Available: https://www.gleason.com/en/products/machines/cylindrical/power-skiving. [Accessed Aug. 04, 2020].
[37] Gleason, “300PS - The Universal, Easily Automated Machine,” Gleason, [Online]. Available: https://www.gleason.com/en/products/machines/cylindrical/power-skiving/300ps-the-universal-easily-automated-machine. [Accessed Aug. 04, 2020].
[38] Gleason, “160CPS - Getting It Right The First Time,” Gleason, [Online]. Available: https://www.gleason.com/en/products/machines/cylindrical/power-skiving/160cps-getting-it-right-the-first-time. [Accessed Aug. 04, 2020].
[39] Profilator, “SCUDDING® - internal & external gears,” Profilator, [Online]. Available: https://www.profilator.de/en/technologies/scudding-internal-external-gears/. [Accessed Aug. 04, 2020].
[40] DATHAN, “Power Skiving,” DATHAN, [Online]. Available: http://www.dathan.co.uk/products/power-skiving. [Accessed Aug. 04, 2020].
[41] I. O. f. Standardization, “ISO 1328-1:2013(en) Cylindrical gears — ISO system of flank tolerance classification — Part 1: Definitions and allowable values of deviations relevant to flanks of gear teeth,” International Organization for Standardization, 2013. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:1328:-1:ed-2:v1:en. [Acce-ssed Sept. 16, 2020].
[42] 杜基成,「創成螺旋鉋齒刀之砂輪輪廓設計與最佳化」,碩士,機械工程學系, 國立中央大學,桃園縣,2019。
[43] 黃浩洋,「動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計」,碩士,機械工程學系,國立中央大學,桃園縣,2019。
[44] D. I. f. Normung, “DIN-3962-1 -Tolerances for Cylindrical Gear Teeth,” Deutsches Institut für Normung ,1978.
[45] I. O. f. Standardization, “ISO 21771:2007(en) Gears — Cylindrical involute gears and gear pairs — Concepts and geometry,” International Organization for Standardization, 2007. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:21771:ed-1:v1:en. [Accessed Sept. 16, 2020].
[46] S. S. Rao, Engineering Optimization: Theory and Practice, Fourth Edition. New Jersey:John Wiley and Sons, 2009.
[47] MathWorks, “Global Optimization Toolbox,” MathWorks, [Online]. Available: https://www.mathworks.com/products/global-optimization.html#global-search-multistart. [Accessed Aug. 13, 2020].
[48] MathWorks. "How GlobalSearch and MultiStart Work,” MathWorks, [Online]. Available: https://www.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html. [Accessed Aug. 13, 2020].
[49] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Martí, "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, vol. 19, no. 3, pp. 328-340, 2007.
[50] MathWorks. “Choosing the Algorithm,” MathWorks, [Online]. Available: https://www.mathworks.com/help/optim/ug/choosing-the-algorithm.html#bsbwxm7. [Accessed Aug. 13, 2020].
[51] MathWorks. ‘fmincon,” MathWorks, [Online]. Available: https://www.mathworks.com/help/optim/ug/fmincon.html. [Accessed Aug. 13, 2020].
[52] MathWorks. “Constrained Nonlinear Optimization Algorithms,” MathWorks, [Online]. Available: https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f. [Accessed Aug. 13, 2020].
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2020-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明