博碩士論文 107624009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:13.58.112.1
姓名 王廷瑜(Ting-Yu Wang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用地電阻影像法與室內電阻率試驗探討地下構造特性 —以臺灣中部初鄉斷層為例
(Investigation of the Subsurface Structure by Using Electrical Resistivity Tomography and Laboratory Resistivity Test – A Case Study on the Chusiang Fault, Central Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣中部的初鄉斷層為車籠埔斷層的分支斷層,呈東北-西南走向的活動動層,位於車籠埔斷層至雙冬斷層之間,東北側往雙冬斷層延伸;西南側則併入車籠埔斷層。此斷層於濁水溪以及東埔蚋溪河岸出露良好且連續的露頭,兩溪之間多受植被覆蓋難以確定斷層跡位置,導致前人繪製的斷層跡存在差異。因此,本研究在針對濁水溪與東埔蚋溪之間的初鄉底地區進行地電阻探測,為了納入所有可能為斷層跡的區域,將調查寬度設為812公尺,由於地形的限制而將部分線型西側的測線範圍修正為往東側延伸。本研究進行電阻率影像剖面法(Electrical Resistivity Tomography, ERT)施測時採用電極間距為8公尺,並配合非傳統的CPP陣列電極配置以增加放電電極的數量使施測過程更加快速。
本研究將施測所獲得的資料以EarthImager2D軟體進行反演,建立地下的電阻率的分布情形。反演結果顯示,本區域電阻率區間為10~100Ω-m,剖面近地表處呈現較高的電阻率(約90~100Ω-m);剖面中線偏西側存在地電阻變化異常的高電阻率區(約60~100Ω-m)與其相鄰兩側的低電阻率區(約10~25Ω-m);其餘區域的電阻率則均勻且無明顯變化,因此除垂直向於淺層存在一道電阻率不連續面外,水平向亦可判釋出四道。剖面中電性變化較明顯的區域推測可能為斷層通過的位置,因此針對剖面中段區域鑽取兩孔岩心搭配地表露頭資料驗證斷層是否通過並了解地下構造。
為了解電阻率變化所指示的地質意義,本研究於鑽取的兩口岩心分別進行岩心判釋與採樣,並使用岩心樣本進行室內電阻率試驗。根據岩心的判釋與電阻率剖面的對比,顯示剖面中電阻率變化處大致與岩性變化處接近,且淺部較高電阻率的區域,由地表露頭證實為崩積層所致。室內電阻率試驗結果顯示,影響電阻率變化最顯著的因素為含水量,其次則為岩石特性。透過室內電阻率試驗的結果對比電阻率剖面,本研究認為剖面變化異常高電阻率區域與低電阻率區域的岩層很可能存在大量裂隙,若裂隙未充滿水分將形成高電阻率區,反之則為低電阻率區;其餘電阻率無明顯變化區域之岩層應較為連續且含水量無顯著差異。而透過岩心紀錄中出現的大量破裂面顯示剖面中的電性不連續帶可能為初鄉斷層帶,此斷層帶的西北緣離地電阻測線西北端水平距離約130公尺,水平寬度約370公尺,以55°向東南傾向下延伸,比較現地露頭資料發現初鄉1A井西側區域岩層為70°至76°,與初鄉1A井岩心淺部傾角約50°,呈現岩層位態有往西變得更陡的趨勢,顯示於剖面中最西側的電性不連續面可能為初鄉主斷層通過的位置,而其餘的電性不連續面,亦有部分與岩心中的剪切帶位置約略吻合,推測可能為其次要斷層。
摘要(英) The Chusiang fault in central Taiwan is located between the Chelongpu fault and the Shuangdong fault. It extends northeastwards to the Shuangdong fault and merges into the Chelongpu fault to the southwest. The Chushiang fault is difficult to trace because it’s mostly covered by vegetation, except the Zhuoshui riverbank and Dongpuri riverbank. Several versions of fault traces proposed by previous studies are noticeably different. In this study, Electrical Resistivity Tomography (ERT) was used with an electrode spacing of 8 meters, and the non-traditional CPP array electrode configuration was used to increase the number of discharge electrodes to make the measuring process faster. The survey line trending NW to SE was up as 812 meters long in order to cover all the probable extent that the fault trace may pass through.
The data will be adapted to perform the inversion of the electrical resistivity profile with the EarthImager 2D software in order to decipher the distribution of the underground resistivity.
According to the inversion results, the resistivity ranges from 10 to 100 Ω-m over the whole section, and it exhibits relatively high values (about 90-100 Ω-m) in the sector near the ground surface. Beneath this sector, there is an abnormally high resistivity of about 60-100 Ω-m appearing in an extent of about 60 meters wide in the distance of one-third of the section from the northwest end. Two sectors with low resistivity of about 10-25 Ω-m, are adjacent to this high-resistivity extent, 30 meters wide to the NW and 130 meters to the SE, respectively. The resistivity of the remaining sectors is relatively uniform without much variation. Therefore, besides the resistivity discontinuity beneath the high-resistivity sector sub-parallel to the ground, four resistivity discontinuities can also be laterally distinguished.
Two boreholes on the survey line and laboratory resistivity tests were conducted to decipher the variations in the resistivity profile. Integrating the logging of two boreholes and the ERT, it is shown that the resistivity change in the profile is roughly close to the lithological boundary, and the sector with high resistivity near the ground surface is correlated to the unsaturated colluvium or weathered soil which could be confirmed by the outcrops on the ground surface. The laboratory resistivity test results show that the main significant factor affecting resistivity variation is water content, followed by rock properties. Comparing the result from the ERT with the one from the laboratory resistivity test, we believe that there are a lot of fractures existing within the strata in those regions, including the sector of abnormally high resistivity and its two adjacent low-resistivity sectors. However, the high-resistivity area likely means that the fractures contain no water and vice versa. The strata in the remaining areas without much variation in resistivity should be relatively intact and have no significant difference in water content.
The region with high resistivity variation bounded by electrical discontinuities may be the Chusiang fault zone inferred from the dense fracture distribution and highly localized deformation in the rock cores. The northwestern edge of the fault zone is about 130 meters away from the northwest endpoint of the survey line, the horizontal width is about 370 meters, and the fault zone dips to the southeast at the angle of 55°. Comparing with the outcrops data, it is found that the dip angles of strata on the west side of borehole CS-1A are 70° to 76°, higher than the dip angle at the shallow part which is about 50°. This indicates the electrical discontinuity showed on the westernmost side of the profile may be the position where the Chusiang main fault passes. The remaining electrical discontinuities may be the branch faults based on the evidence that the electrical discontinuities which the borehole penetrated correlate with shear zones appearing in the rock cores.
關鍵字(中) ★ 初鄉斷層
★ 電阻率影像剖面
★ 室內電阻率
關鍵字(英) ★ Chusiang fault
★ Electrical Resistivity Tomography
★ Laboratory resistivity test
論文目次 摘要................... I
Abstract............... III
致謝................... V
目錄................... VI
圖目錄................. IX
表目錄................. XII
第1章 緒論........... 1
1.1 前言........... 1
1.2 研究動機與目的.. 1
第2章 區域地質........ 3
2.1 地體構造........ 3
2.2 區域地質概況.... 4
2.2.1 地形........... 4
2.2.2 地層........... 6
2.2.3 地質構造........ 9
2.2.4 現地露頭概況.... 11
第3章 文獻回顧........ 13
3.1 初鄉斷層相關研究................ 13
3.1.1 初鄉斷層前人野外調查與活動性...... 13
3.1.2 地球物理方法相關研究............. 15
3.2 地電阻法................ 17
3.2.1 地電阻法的演進.......... 17
3.2.2 地電阻法的應用範圍....... 18
3.2.3 應用地電阻探測活動斷層... 18
第4章 研究方法與原理.......... 20
4.1 地電阻影像法............ 20
4.1.1 直流電阻簡介............ 20
4.1.2 地電阻的施測與反演....... 22
4.2 室內岩樣電阻率試驗....... 34
4.3 岩心分析................ 39
第5章 研究結果................ 40
5.1 地電阻測線剖面.......... 40
5.2 室內電阻率實驗.......... 45
5.3 鑽井成果判釋............ 55
第6章 討論........................... 57
6.1 現地電阻率與鑽井結果與對比....... 57
6.1.1 鑽井深度內電阻率變化............. 59
6.2 室內電阻率試驗.................. 63
6.2.1 岩石飽和度對電阻率影響........... 63
6.2.2 其他因素影響.................... 68
6.2.3 影響程度比較.................... 73
6.3 地電阻剖面解釋.................. 77
6.3.1 近地表高電阻率區域............... 77
6.3.2 中線以西電阻率異常變化區......... 78
6.3.3 剖面兩側區域.................... 81
6.4 地質模型與綜合討論............... 82
第7章 結論........................... 87
參考文獻................................ 88
附錄A.................................. 92
附錄B.................................. 95
附錄C.................................. 117
參考文獻 中國石油公司,臺中地質圖,比例尺十萬分之一,中國石油公司臺灣油礦探勘總處,1982。
何春蓀、林佛榮、詹新甫和譚立平,「南投集集大山地質地形圖及構造剖面圖,比例尺二萬五千分之一」,臺灣省中央地質調查所,1955。
何春蓀、詹新甫和譚立平,「臺灣南投集集大山之地質及煤礦」,臺灣省中央地質調查所彙刊,第11號,第13-20頁,1956。
李冠樺,「電容耦合地電阻探測系統應用於地下管線及坑道之研究」,國立中央大學,碩士,2006。
吳秉昀,「地電阻影像法於海岸生物礁調查之研究-以桃園觀音區為例」,國立中央大學,2015。
林啟文、周稟珊和張育仁,「臺灣中部濁水溪地區卓蘭層的構造特性及其意義」,經濟部中央地質調查所特刊,第34號,第1-23頁,2019。
林啟文、盧詩丁、石同生、林偉雄、劉彥求和陳柏村,「臺灣中部的活動斷層」,經濟部中央地質調查所特刊,第21號,共148頁,2008。
林啟文、盧詩丁、黃文正、石同生和張徽正,「臺灣中部濁水溪以南地區的集集地震斷層與構造分析」,經濟部中央地質調查所特刊,第12號,第89-111頁, 2000。
林啟斌,「地電阻影像法應用於湖底及斷層測勘」,國立中央大學,碩士,1999。
洪日豪,「整合井下岩心、電測及岩石物性資料評估地震觀測站場址的力學特性研究」,2013。
洪彥豪,「應用地電阻影像剖面法於湖口斷層之研究」,國立中央大學,碩士,2004。
洪瑛鈞,「地電阻影像探測在地工調查之應用與問題探討」,國立交通大學,博士,2013。
郭進春,「地電阻測勘法於工程應用之研究」,高雄工專學報,第14期,第133-183頁,1984。
陳于高、徐澔德、賴光胤、王昱、莊昀叡和陳文山,「階地變形和活動構造:以南投東埔蚋溪為例」,中國地質學會九十一年年會論文集,第12-14頁,2002。
陳文山,「金山斷層電探研究」,國立中央大學,碩士,1991。
陳佑邦,「應用地電阻影像剖面法於新城斷層之研究」,國立中央大學,碩士,2001。
陳華玫、紹屏華和石同生,五萬分之一台灣地質圖說明書,南投地質圖說明書,經濟部中央地質調查所,2004。
陳宜傑,「應用地電阻法於土石流地滑之研究」,國立中央大學,碩士,2004。
陳勉銘、謝有忠和陳棋炫,五萬分之一台灣地質圖說明書,阿里山地質圖說明書,經濟部中央地質調查所,2016。
陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍,「臺灣地質概論」,中華民國地質學會,共204頁,2016。
梅興泰、鄭富書和蔡道賜,「地電阻影像剖面法對非均質地下實體之模擬分析」,技術學刊,21,4,369-381頁,2006。
費立沅和陳勉銘,「易淹水地區上游集水區地質調查及資料庫建置:圖冊」,經濟部中央地質調查所,共53頁,2013。
黃文正,「活動斷層特性精細調查(1/4)」,經濟部中央地質調查所,共104頁,2019。
黃鑑水、謝凱旋和陳勉銘,五萬分之一台灣地質圖說明書,埔里地質圖說明書,經濟部中央地質調查所,2000。
劉桓吉和李錦發,雲林圖幅及說明書,臺灣地區五萬分之一第38號,經濟部中央地質調查所出版,1998。
劉桓吉、李錦發和紀宗吉,五萬分之一台灣地質圖說明書,雲林地質圖說明書,經濟部中央地質調查所,2004。
劉興昌,「活動斷層電性研究—以湖口、新城及山腳斷層為例」,國立中央大學,博士,2009。
黎明工程顧問有限公司,「集集攔河堰初次使用安全評估地質補充調查及試驗專題報告」,經濟部水利署中區水資源局,共60頁,2013。
Bergström, G., Försök med elektrisk malmletning, Kungl. boktryckeriet. PA Norstedt & söner, 1914.
Clark, J. A. and Page, R., "Inexpensive geophysical instruments supporting groundwater exploration in developing nations", Journal of Water Resource and Protection, Vol. 3(10), pp. 768, 2011.
Dahlin, T., The Development of a Cable System for Vertical Electrical Soundingand a Comparison of the Schlumberger and Offset Wenner Methods, Lund University, 1989.
Dahlin, T., "The development of DC resistivity imaging techniques", Computers & Geosciences, Vol. 27(9), pp. 1019-1029, 2001.
Fukui, K., Okubo, S. and Terashima, T., "Electromagnetic radiation from rock during uniaxial compression testing: the effects of rock characteristics and test conditions", Rock mechanics and rock engineering, Vol. 38(5), pp. 411-423, 2005.
Jackson, P. D., "An electrical resistivity method for evaluating the in‐situ porosity of clean marine sands", Marine Georesources & Geotechnology, Vol. 1(2), pp. 91-115, 1975.
Keller, G. V. and Frischknecht, F. C., "Electrical methods in geophysical prospecting", 1966.
Loke, M. H., "Tutorial : 2-D and 3-D electrical imaging surveys", 2004.
Petersson, W., "Om malmsokande medelst elektricitet", Jern-Kontorets annaler (2-3), pp. 153-171, 1906.
Rhoades, J., Raats, P. and Prather, R., "Effects of liquid‐phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity", Soil Science Society of America Journal, Vol. 40(5), pp. 651-655, 1976.
Schlumberger, C., Etude sur la prospection electrique du sous-sol, Gauthier-Villars, 1920.
Sauer, M., Southwick, P., Spiegler, K. and Wyllie, M., "Electrical conductance of porous plugs-ion exchange resin-solution systems", Industrial and Engineering Chemistry, Vol. 47(10), pp. 2187-2193, 1955.
Suppe, J., "Mechanics of mountain building in Taiwan", Memoir of the Geology Society of Chain, (4), pp. 66-89, 1981.
Suppe, J., "Seismic interpretation of the compressively reactivated normal fault near Hsinchu, western Taiwan", Petroleum Geology of Taiwan, (20), pp. 85-96, 1984.
Simoes, M., Avouac, J. P. and Chen, Y. G., "Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna river, west central Taiwan", Journal of Geophysical Research: Solid Earth, Vol. 112(B3), 2007.
Szalai, S. and Szarka, L., "Parameter sensitivity maps of surface geoelectric arrays II. Nonlinear and focussed arrays", Acta Geodaetica et Geophysica Hungarica, Vol. 43(4), pp. 439-447, 2008.
Urish, D. W., "Electrical resistivity—hydraulic conductivity relationships in glacial outwash aquifers", Water Resources Research, Vol. 17(5), pp. 1401-1408, 1981.
van Schoor, M., "Detection of sinkholes using 2D electrical resistivity imaging", Journal of Applied Geophysics, Vol. 50(4), pp. 393-399, 2002.
Wang, C. Y., Li, C. L., Su, F. C., Leu, M. T., Wu, M. S., Lai, S. H. and Chern, C. C., "Structural mapping of the 1999 Chi-Chi earthquake fault, Taiwan by seismic reflection methods", Terrestrial, Atmospheric and Oceanic Sciences, Vol. 13(3), pp. 211-226, 2002.
指導教授 黃文正 陳建志(Wen-Jeng Huang Chien-Chih Chen) 審核日期 2021-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明