博碩士論文 107624016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.147.77.97
姓名 鍾佳良(Jia-Liang Jhong)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用模擬退火演算法推估地下污染物來源
(Identification of the groundwater contaminant source using simulated annealing algorithm)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水被視為穩定且可靠的用水來源,卻也因其不可見及水循環更新速度慢這兩特性,一旦受到污染,管理單位難以在第一時間發現,也導致污染源會隨時間推移而擴大其分布範圍,直接或間接增加民眾用水品質風險。在面對受污染的水體,需要瞭解污染傳輸歷程。要解污染物之傳輸歷程,須瞭解該地區的水文地質條件及地下水污染傳輸等機制,方得以數值模式進行相關推估,基於各項參數取得條件之不易、監測井數量有限,推估的工作變得相當困難。為解決現地觀測資料的不足所帶來之影響,本研究開發出以python介接數值模式與啟發式演算法(heuristic algorithm)推估污染傳輸之方法,其中水文及污染傳輸數值模式分別使用MODFLOW-2005與MT3D-MS,用於生成測試案例與當作最佳化問題的數值模式。啟發式演算法則採用退火演算法(simulated annealing algorithm, SA),用於求解最佳化問題之演算法。為減少推估誤差與提升系統之穩健性,本研究將數值模式中所使用的參數設定成一特定範圍並離散化,降低因固定參數所產生之誤差;對於退火演算法及動力系統所帶來的不確定性,利用系集(ensemble)與空間分析之概念,降低單一次模擬所帶來的誤差,提高推估系統穩健性。為驗證推估方法,研究中使用均質地質條件與單一且持續性的污染點源釋放,合成兩假想之污染傳輸案例作為推估方法的驗證,經測試案例驗證後,推估方法除能夠有效推估污染源之點位、傳輸方向,本研究於方法建立後,探討並量化不同數量的觀測點對於此方法的適用性與不確定性,結果顯示在監測井數量為6以上時,點源推估之誤差皆小於1公尺,傳輸方向誤差為5度以內。
摘要(英) Groundwater is one of the stable and reliable water resources. Due to the natural complexity of the aquifer systems, early detection of the contaminant is challenging. The spread of the contaminant in a groundwater system might directly or indirectly influence residents near the contamination sources. Typical approaches to predicting the migration of the plumes are the numerical models, which allow the reproductions of the transport processes and quantify the concentration distribution. Due to the limited parameters for flow and transport models, the implementations of most numerical models become complicated. We introduced a heuristic algorithm to estimate flow and transport parameters for a contaminant site in the study. The model tests consider two numerical examples, where the flow directions and numbers of observations are different in the designed scenarios. Specifically, the MODFLOW-2005 and MT3D-MS models were used for generating the observations at the synthetic sites. The MODFLOW-2005 and MT3D-MS models associated with the simulated annealing (SA) algorithm were developed and systematically tested to quantify the accuracy of the estimated flow and transport parameters. In the study, the numerical model parameters were fixed to a specific range and discretized to reduce the estimation errors and improve the system′s robustness. Additionally, the ensemble approach and spatial analysis were used to reduce the errors caused by a single simulation. Results showed that the developed model could effectively identify the locations and directions of the contaminant source. The model enables evaluating suitable observation wells for the sites and quantifies associated uncertainty induced by the limited observations. The numerical examples showed that the number of monitoring wells needs to be higher than 6. The source point estimation error can be less than 1 m, and the error of the transport direction can be within 5 degrees.
關鍵字(中) ★ 模擬退火演算法
★ 地下水污染溯源
★ 系集
關鍵字(英) ★ simulated annealing algorithm
★ groundwater contaminant source identification
★ ensemble
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究流程 3
1-4 論文架構 4
第二章 文獻回顧 5
2-1 污染源識別相關研究 5
2-2 啟發式演算法 6
第三章 研究方法 10
3-1 地下水模擬模式 11
3-1-1 地下水流模式MODFLOW 11
3-1-2 溶質傳輸模式MT3D-MS 12
3-2 模擬退火演算法 13
3-2-1 方法概述 14
3-2-2 演算法流程 18
3-2-3 目標函數 20
3-2-4 退火演算法參數設定 23
3-3 空間聚集分析 25
第四章 測試案例 28
4-1 模式參數說明 30
4-2 可行解空間 35
4-3 退火策略參數 35
第五章 結果與討論 36
5-1 測試案例一:污染點源與傳輸方向推估之結果 36
5-2 測試案例二:污染點源與傳輸方向推估之結果 43
5-3 監測井數與推估點源方法之適用性及討論 50
5-3-1 推估點源座落位置之準確度與精準度 60
5-3-2 推估點源座落位置之成功率與誤差量 62
5-3-3 推估傳輸方向之誤差量 64
第六章 結論與建議 66
6-1 結論 66
6-2 建議 67
參考文獻 68
參考文獻 [1] 環保署. "土壤及地下水污染整治法施行細則". https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0110002. 2001.
[2] 環保署. "監測井地下水採樣方法". http://www.rootlaw.com.tw/Attach/L-Doc/A040300051000500-1100105-1000-001.pdf. 2015.
[3] J. Atmadja and A. C. Bagtzoglou. "State of the art report on mathematical methods for groundwater pollution source identification", Environmental Forensics, 2(3), pp.205-214, 2001.
[4] A. M. Michalak and P. K. Kitanidis. "Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling", Water Resources Research, 40(8), pp.14, 2004.
[5] A. C. Bagtzoglou and J. Atmadja, Mathematical methods for hydrologic inversion: The case of pollution source identification. Water pollution. Springer. 2005.
[6] M. T. Ayvaz and H. Karahan. "A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates", Journal of Hydrology, 357(1-2), pp.76-92, 2008.
[7] B. Y. Mirghani, K. G. Mahinthakumar, M. E. Tryby, R. S. Ranjithan, & E. M. Zechman. "A parallel evolutionary strategy based simulation-optimization approach for solving groundwater source identification problems", Advances in Water Resources, 32(9), pp.1373-1385, 2009.
[8] M. T. Ayvaz. "A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems", Journal of Contaminant Hydrology, 117(1-4), pp.46-59, 2010.
[9] M. K. Jha and B. Datta. "Simulated annealing based simulation-optimization approach for identification of unknown contaminant sources in groundwater aquifers", Desalination and Water Treatment, 32(1-3), pp.79-85, 2011.
[10] B. Y. Mirghani, E. M. Zechman, R. S. Ranjithan, & G. Mahinthakumar. "Enhanced Simulation-Optimization Approach Using Surrogate Modeling for Solving Inverse Problems", Environmental Forensics, 13(4), pp.348-363, 2012.
[11] B. Datta, O. Prakash, S. Campbell, & G. Escalada. "Efficient Identification of Unknown Groundwater Pollution Sources Using Linked Simulation-Optimization Incorporating Monitoring Location Impact Factor and Frequency Factor", Water Resources Management, 27(14), pp.4959-4976, 2013.
[12] H. Wang and X. Jin. "Characterization of groundwater contaminant source using Bayesian method", Stochastic Environmental Research and Risk Assessment, 27(4), pp.867-876, 2013.
[13] G. Gurarslan and H. Karahan. "Solving inverse problems of groundwater-pollution-source identification using a differential evolution algorithm", Hydrogeology Journal, 23(6), pp.1109-1119, 2015.
[14] M. T. Ayvaz. "A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems", Journal of Hydrology, 538, pp.161-176, 2016.
[15] S. Bahrami, F. Doulati Ardejani, & E. Baafi. "Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine", Journal of Hydrology, 536, pp.471-484, 2016.
[16] S. N. Bashi-Azghadi, R. Kerachian, M. R. Bazargan-Lari, & M. R. Nikoo. "Pollution Source Identification in Groundwater Systems: Application of Regret Theory and Bayesian Networks", Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40(3), pp.241-249, 2016.
[17] A. Zanini and A. D. Woodbury. "Contaminant source reconstruction by empirical Bayes and Akaike′s Bayesian Information Criterion", Journal of Contaminant Hydrology, 185, pp.74-86, 2016.
[18] J. J. Zhang, W. X. Li, L. Z. Zeng, & L. S. Wu. "An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems", Water Resources Research, 52(8), pp.5971-5984, 2016.
[19] M. Giudici, F. Delay, G. de Marsily, G. Parravicini, G. Ponzini, & A. Rosazza. "Discrete stability of the Differential System Method evaluated with geostatistical techniques", Stochastic Hydrology and Hydraulics, 12(3), pp.191-204, 1998.
[20] S. Shlomi and A. M. Michalak. "A geostatistical framework for incorporating transport information in estimating the distribution of a groundwater contaminant plume", Water Resources Research, 43(3), pp.12, 2007.
[21] T. H. Kim, S. Y. Chung, N. Park, S. Y. Hamm, S. Y. Lee, & B. W. Kim. "Combined analyses of chemometrics and kriging for identifying groundwater contamination sources and origins at the Masan coastal area in Korea", Environmental Earth Sciences, 67(5), pp.1373-1388, 2012.
[22] M. Rivest and D. Marcotte. "Kriging groundwater solute concentrations using flow coordinates and nonstationary covariance functions", Journal of Hydrology, 472, pp.238-253, 2012.
[23] S. Venkatramanan, S. Y. Chung, T. H. Kim, B. W. Kim, & S. Selvam. "Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City, Korea", Environmental Earth Sciences, 75(11), pp.14, 2016.
[24] Y. Zhao, W. X. Lu, & C. N. Xiao. "A Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sources", Journal of Contaminant Hydrology, 185, pp.51-60, 2016.
[25] E. Kazemi, H. Karyab, & M. M. Emamjome. "Optimization of interpolation method for nitrate pollution in groundwater and assessing vulnerability with IPNOA and IPNOC method in Qazvin plain", Journal of Environmental Health Science and Engineering, 15, pp.10, 2017.
[26] A. Canion, L. McCloud, & D. Dobberfuhl. "Predictive modeling of elevated groundwater nitrate in a karstic spring-contributing area using random forests and regression-kriging", Environmental Earth Sciences, 78(9), pp.11, 2019.
[27] A. Laborczi, C. Bozan, J. Korosparti, G. Szatmari, B. Kajari, N. Turi, G. Kerezsi, & L. Pasztor. "Application of Hybrid Prediction Methods in Spatial Assessment of Inland Excess Water Hazard", Isprs International Journal of Geo-Information, 9(4), pp.17, 2020.
[28] O. Prakash and B. Datta. "Multiobjective Monitoring Network Design for Efficient Identification of Unknown Groundwater Pollution Sources Incorporating Genetic Programming–Based Monitoring", Journal of Hydrologic Engineering, 19(11), 2014.
[29] J. Sreekanth and B. Datta. "Design of an Optimal Compliance Monitoring Network and Feedback Information for Adaptive Management of Saltwater Intrusion in Coastal Aquifers", Journal of Water Resources Planning and Management, 140(10), 2014.
[30] O. Prakash and B. Datta. "Optimal characterization of pollutant sources in contaminated aquifers by integrating sequential-monitoring-network design and source identification: methodology and an application in Australia", Hydrogeology Journal, 23(6), pp.1089-1107, 2015.
[31] A. Zagouras, A. Kolovos, & C. F. M. Coimbra. "Objective framework for optimal distribution of solar irradiance monitoring networks", Renewable Energy, 80, pp.153-165, 2015.
[32] H. K. Esfahani and B. Datta. "Fractal Singularity–Based Multiobjective Monitoring Networks for Reactive Species Contaminant Source Characterization", Journal of Water Resources Planning and Management, 144(6), 2018.
[33] K. Kumari, S. Jain, & A. Dhar. "Computationally efficient approach for identification of fuzzy dynamic groundwater sampling network", Environ Monit Assess, 191(5), pp.310, 2019.
[34] H. Li, J. Gu, A. Hanif, A. Dhanasekar, & K. Carlson. "Quantitative decision making for a groundwater monitoring and subsurface contamination early warning network", Sci Total Environ, 683, pp.498-507, 2019.
[35] O. Prakash and B. Datta. "Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations", Environ Monit Assess, 185(7), pp.5611-26, 2013.
[36] E. H. Isaaks and M. R. Srivastava, Applied geostatistics. 551.72 ISA. 1989.
[37] M. J. Pyrcz and C. V. Deutsch, Geostatistical reservoir modeling. Oxford university press. 2014.
[38] T. Xu and J. J. Gomez-Hernandez. "Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter", Advances in Water Resources, 112, pp.106-123, 2018.
[39] C. Zhang, J. G. Chu, & G. T. Fu. "Sobol′′s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China", Journal of Hydrology, 480, pp.58-68, 2013.
[40] Y. Tian, M. J. Booij, & Y. P. Xu. "Uncertainty in high and low flows due to model structure and parameter errors", Stochastic Environmental Research and Risk Assessment, 28(2), pp.319-332, 2014.
[41] Z. Chang, W. Lu, H. Wang, J. Li, & J. Luo. "Simultaneous identification of groundwater contaminant sources and simulation of model parameters based on an improved single-component adaptive Metropolis algorithm", Hydrogeology Journal, pp.1-15, 2020.
[42] J. Jiao, Y. Zhang, & L. Wang. "A new inverse method for contaminant source identification under unknown solute transport boundary conditions", Journal of Hydrology, 577, 2019.
[43] S. Jiang, J. Fan, X. Xia, X. Li, & R. Zhang. "An Effective Kalman Filter-Based Method for Groundwater Pollution Source Identification and Plume Morphology Characterization", Water, 10(8), 2018.
[44] J. J. Zhang, L. Z. Zeng, C. Chen, D. J. Chen, & L. S. Wu. "Efficient Bayesian experimental design for contaminant source identification", Water Resources Research, 51(1), pp.576-598, 2015.
[45] M. Jha and B. Datta. "Three-Dimensional Groundwater Contamination Source Identification Using Adaptive Simulated Annealing", Journal of Hydrologic Engineering, 18(3), pp.307-317, 2013.
[46] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press. 1992.
[47] M. T. Ayvaz and A. Elçi. "Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach", Journal of Hydrology, 563, pp.1078-1091, 2018.
[48] Y. Xuesong, S. Jie, & H. Chengyu. "Research on contaminant sources identification of uncertainty water demand using genetic algorithm", Cluster Computing, 20(2), pp.1007-1016, 2017.
[49] J. B. Kollat and P. M. Reed. "Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design", Advances in Water Resources, 29(6), pp.792-807, 2006.
[50] G. Mahinthakumar and M. Sayeed. "Hybrid genetic algorithm—local search methods for solving groundwater source identification inverse problems", Journal of Water Resources Planning and Management, 131(1), pp.45-57, 2005.
[51] P. Reed, B. Minsker, & A. J. Valocchi. "Cost‐effective long‐term groundwater monitoring design using a genetic algorithm and global mass interpolation", Water Resources Research, 36(12), pp.3731-3741, 2000.
[52] L. L. Rogers, F. U. Dowla, & V. M. Johnson. "Optimal field-scale groundwater remediation using neural networks and the genetic algorithm", Environmental Science & Technology, 29(5), pp.1145-1155, 1995.
[53] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN′95-international conference on neural networks, 1995, vol. 4: IEEE, pp. 1942-1948.
[54] J. Li, W. Lu, H. Wang, Y. Fan, & Z. Chang. "Groundwater contamination source identification based on a hybrid particle swarm optimization-extreme learning machine", Journal of Hydrology, 584, pp.124657, 2020.
[55] M. Jahandideh-Tehrani, O. Bozorg-Haddad, & H. A. Loáiciga. "Application of particle swarm optimization to water management: an introduction and overview", Environmental monitoring and assessment, 192(5), pp.1-18, 2020.
[56] L. Guneshwor, T. Eldho, & A. V. Kumar. "Identification of groundwater contamination sources using meshfree RPCM simulation and particle swarm optimization", Water Resources Management, 32(4), pp.1517-1538, 2018.
[57] M. Mategaonkar and T. Eldho. "Groundwater remediation optimization using a point collocation method and particle swarm optimization", Environmental Modelling & Software, 32, pp.37-48, 2012.
[58] S. Gaur, B. R. Chahar, & D. Graillot. "Analytic elements method and particle swarm optimization based simulation–optimization model for groundwater management", Journal of Hydrology, 402(3-4), pp.217-227, 2011.
[59] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, & E. Teller. "Simulated annealing", Journal of Chemical Physics, 21(161-162), pp.1087-1092, 1953.
[60] S. Kirkpatrick, C. D. Gelatt, & M. P. Vecchi. "Optimization by simulated annealing", science, 220(4598), pp.671-680, 1983.
[61] A. Burduk, W. Bożejko, J. Pempera, & K. Musiał. "On the simulated annealing adaptation for tasks transportation optimization", Logic Journal of the IGPL, 26(6), pp.581-592, 2018.
[62] H. Asefi, S. Lim, & M. Maghrebi. "Adaptation of simulated annealing to an integrated municipal solid waste location-routing problem", International Journal of Logistics Systems and Management, 28(2), pp.127-143, 2017.
[63] H. Li and D. Landa-Silva. "An adaptive evolutionary multi-objective approach based on simulated annealing", Evolutionary Computation, 19(4), pp.561-595, 2011.
[64] J. K. Hodgins and N. S. Pollard, "Adapting simulated behaviors for new characters," in Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 1997, pp. 153-162.
[65] K. M. Carley and D. M. Svoboda. "Modeling organizational adaptation as a simulated annealing process", Sociological methods & research, 25(1), pp.138-168, 1996.
[66] D. Adler, "Genetic algorithms and simulated annealing: A marriage proposal," in IEEE International Conference on Neural Networks, 1993: IEEE, pp. 1104-1109.
[67] J. W. Gibbs, Elementary principles in statistical mechanics: developed with especial reference to the rational foundations of thermodynamics. C. Scribner′s sons. 1902.
[68] L. W. Braile. "Comparison of four random to grid methods", Computers & Geosciences, 4(4), pp.341-349, 1978.
[69] M. G. McDonald and A. W. Harbaugh, A modular three-dimensional finite-difference ground-water flow model. US Geological Survey. 1988.
[70] C. Zheng and P. P. Wang. "MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide", 1999.
[71] V. Černý. "Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm", Journal of optimization theory and applications, 45(1), pp.41-51, 1985.
[72] D. Mayer and D. Butler. "Statistical validation", Ecological modelling, 68(1-2), pp.21-32, 1993.
[73] D. E. Dougherty and R. A. Marryott. "Optimal groundwater management: 1. Simulated annealing", Water Resources Research, 27(10), pp.2493-2508, 1991.
[74] 溫在弘, 劉擇昌, 林民浩,「犯罪地圖繪製與熱區分析方法及其應用」,地理研究, 2010.
[75] R. A. Freeze and J. A. Cherry, "Groundwater," 1979.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明