博碩士論文 107323051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.149.234.251
姓名 倪子堯(Tzu-Yao Ni)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 阻塞性水腦症大鼠生理量測與影像分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 阻塞性水腦症疾病所造成顱內壓力上升與大腦結構的變化過程仍未完全了解,加上持續有許多生醫工程團隊透過模擬的方法嘗試了解大腦內液體的循環以及腦實質與腦脊髓液的交互變化,為了幫助人們更了解此疾病的發展過程,本研究將透過大鼠動物實驗建立阻塞性水腦症疾病模式,獲得疾病發生前大腦的生理數據以及疾病發生後大腦的生理變化,提供給大腦研究者們更多的資訊。腦脊髓液的流動幫助維持中樞神經系統正常的生理活動,對生物體來說至關重要,但人們對腦脊髓液的認識和研究與血液相比不足許多,尤其在可視化的技術方面更是寥寥無幾。
本篇論文將分為兩部分,第一部分動物實驗,將收集疾病發生前大鼠腦部環境的生理數據(顱內壓、頸動脈壓、頸靜脈壓),以及透過小腦延髓池注射dioctahedral smectite懸浮液誘發大鼠水腦症疾病,並且藉由自製的量測導管達到再同一隻老鼠身上持續監測顱內壓,分別在第0天(誘發前)與誘發疾病後的第1天、第3天、第5天、第7天進行顱內壓監測,搭配上7T核磁共振造影技術量化出一週內腦部結構的變化,假手術老鼠也在相同的天數進行量測與造影。第二部分影像計算,將透過核磁共振擴散加權造影換算出鼠腦水分的滲透性,結合組織建模後提供三維可視化的大腦水分滲透值圖譜,並藉由健康老鼠與水腦症老鼠來展現此技術。
結果顯示水腦症老鼠腦室中腦脊髓液聚集造成腦室明顯擴張,到第7天仍持續成長,而顱內壓在誘發疾病後的前3天上升最劇烈,第5天開始則維持在穩定的高顱內壓,假手術老鼠腦室大小與顱內壓均維持在正常範圍,影像計算部分本人利用擴散加權影像所換算出鼠腦的水分滲透值與過去文獻中腦脊髓液與間質液的滲透性相近,並且透過水分滲透值圖譜觀察到水腦症老鼠有腦室周圍白質水腫的現象,與組織切片染色的結果一致。
摘要(英) The process of intracranial pressure rising and the brain structure deformation caused by obstructive hydrocephalus are not fully understood. In addition, many biomedical engineering teams continue to use simulation methods to calculate the circulation of fluid in the brain, trying to understand the interaction between brain parenchyma and cerebrospinal fluid (CSF). In order to help people understanding more about the development of this disease and providing more information for brain researchers, this research will establish obstructive hydrocephalus disease through an animal experiment model, and measure the physiological data of the brain before and after the disease occurs. The flow of cerebrospinal fluid is vital to the organism, which helps maintaining the function of central nervous system. However, comparing to hematology, people’s knowledge of cerebrospinal fluid is far from enough, especially in visualize technology.
This essay can be roughly divided into two parts. The first part is the animal experiments. Physiological data of the environment of brain was collected from healthy rat, including intracranial pressure (ICP), carotid artery pressure (CAP) and jugular vein pressure (JVP). Obstructive hydrocephalus was induced by injected dioctahedral smectite suspension into cisterna magna of the rat. ICP was then measured in the same rat at Day0 (before injection), and Day1, Day3, Day5, Day7 after induced hydrocephalus by using self-made measuring cannula. Magnetic resonance imaging (MRI) was obtained using 7T scanner to quantify the changes of the rat brain structure within a week. Sham-operated rat was also measured and imaged on the same days. The second part is the image calculation of the water permeability of the rat brain from MR diffusion image. After combining with biological reconstruction, a 3D visualized brain water permeability map can be displayed. In this research, I demonstrated this technique with healthy rat and hydrocephalus rat.
The results showed that accumulation of CSF in hydrocephalus rat caused significant expansion of the ventricle, which grew continuously at Day7. On the other hand, ICP rose most sharply at the beginning 3 days, and it remained a stable high ICP from Day5. The size of the ventricle and ICP of all sham-operated animal was maintained in a normal rage. In the part of the image calculation, the water permeability of the rat brain which calculated from this study corresponded to the CSF and interstitial fluid permeability of previous research. Periventricular white mater edema was also observed through water permeability map of the hydrocephalus rat, which was consistent with the result of histological analysis from the brain section of the hydrocephalus rat.
關鍵字(中) ★ 水腦症
★ 顱內壓量測
★ 腦脊髓液滲透性
★ 大腦水分滲透性
關鍵字(英)
論文目次 摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 VII
縮寫表 IX
第一章: 緒論 1
1.1 水腦症 1
1.2 鼠腦解剖學與生理學 3
1.2.1 鼠腦的解剖學與組成 3
1.2.2 老鼠的腦室系統與腦脊髓液循環 5
1.3 實驗動機與目的 7
第二章: 文獻回顧 8
2.1 動物實驗 8
2.1.1 過去大鼠與小鼠水腦症動物實驗的研究 8
2.1.2 大鼠與小鼠顱內壓的量測 10
2.2 間質液與腦脊髓液滲透性的測量 13
第三章: 材料與方法 16
3.1 動物實驗 16
3.1.1 阻塞性水腦症動物模式 16
3.1.2 動物分組與實驗設計 17
3.1.3 手術與量測 18
3.1.4 核磁共振實驗設計 21
3.2 影像計算-利用核磁共振擴散加權影像獲得大腦水分滲透性 22
3.2.1 擴散加權成像 27
3.2.2 表觀擴散係數影像 29
3.2.3 影像計算-獲得滲透值影像 31
3.2.4 影像重建與網格建立 31
3.2.5 座標旋轉與內插 32
第四章: 結果與討論 35
4.1 動物實驗-生理量測 35
4.2 動物實驗-核磁共振影像 49
4.3 影像計算-水分滲透值圖譜 59
第五章: 總結 65
第六章: 未來展望 66
References 67
參考文獻 [1] D. Greitz, "Radiological Assessment of Hydrocephalus: New Theories and Implications for Therapy," The Neuroradiology Journal, vol. 19, no. 4, pp. 475-495, 2006/08/01 2006, doi: 10.1177/197140090601900407.
[2] D. Shprecher, J. Schwalb, and R. Kurlan, "Normal pressure hydrocephalus: diagnosis and treatment," (in eng), Curr Neurol Neurosci Rep, vol. 8, no. 5, pp. 371-376, 2008, doi: 10.1007/s11910-008-0058-2.
[3] S. Eftekhari, C. S. J. Westgate, M. S. Uldall, and R. H. Jensen, "Preclinical update on regulation of intracranial pressure in relation to idiopathic intracranial hypertension," (in eng), Fluids and barriers of the CNS, vol. 16, no. 1, pp. 35-35, 2019, doi: 10.1186/s12987-019-0155-4.
[4] V. Leinonen, R. Vanninen, and T. Rauramaa, "Chapter 5 - Cerebrospinal fluid circulation and hydrocephalus," in Handbook of Clinical Neurology, vol. 145, G. G. Kovacs and I. Alafuzoff Eds.: Elsevier, 2018, pp. 39-50.
[5] M. Czosnyka and J. D. Pickard, "Monitoring and interpretation of intracranial pressure," (in eng), J Neurol Neurosurg Psychiatry, vol. 75, no. 6, pp. 813-821, 2004, doi: 10.1136/jnnp.2003.033126.
[6] G. Cinalli, "Alternatives to shunting," Child′s Nervous System, vol. 15, no. 11-12, pp. 718-731, 1999.
[7] S. B. Hladky and M. A. Barrand, "Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence," (in eng), Fluids and barriers of the CNS, vol. 11, no. 1, pp. 26-26, 2014, doi: 10.1186/2045-8118-11-26.
[8] Y. Lei, H. Han, F. Yuan, A. Javeed, and Y. Zhao, "The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications," Progress in Neurobiology, vol. 157, pp. 230-246, 2017/10/01/ 2017, doi: https://doi.org/10.1016/j.pneurobio.2015.12.007.
[9] M. De Bock et al., "Endothelial calcium dynamics, connexin channels and blood–brain barrier function," Progress in Neurobiology, vol. 108, pp. 1-20, 2013/09/01/ 2013, doi: https://doi.org/10.1016/j.pneurobio.2013.06.001.
[10] L. Sakka, G. Coll, and J. Chazal, "Anatomy and physiology of cerebrospinal fluid," European Annals of Otorhinolaryngology, Head and Neck Diseases, vol. 128, no. 6, pp. 309-316, 2011/12/01/ 2011, doi: https://doi.org/10.1016/j.anorl.2011.03.002.
[11] M. J. Simon and J. J. Iliff, "Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1862, no. 3, pp. 442-451, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.bbadis.2015.10.014.
[12] I. M. Levinger, "The cerebral ventricles of the rat," (in eng), J Anat, vol. 108, no. Pt 3, pp. 447-451, 1971. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/5575312
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1234181/.
[13] J. M. Snyder, C. E. Hagan, B. Bolon, and C. D. Keene, "20 - Nervous System," in Comparative Anatomy and Histology (Second Edition), P. M. Treuting, S. M. Dintzis, and K. S. Montine Eds. San Diego: Academic Press, 2018, pp. 403-444.
[14] W. E. Dandy and K. D. Blackfan, "AN EXPERIMENTAL AND CLINICAL STUDY OF INTERNAL HYDROCEPHALUS," Journal of the American Medical Association, vol. 61, no. 25, pp. 2216-2217, 1913, doi: 10.1001/jama.1913.04350260014006.
[15] W. E. Dandy, "EXPERIMENTAL HYDROCEPHALUS," (in eng), Ann Surg, vol. 70, no. 2, pp. 129-142, 1919, doi: 10.1097/00000658-191908000-00001.
[16] D. L. Di Curzio, "Animal Models of Hydrocephalus," Open Journal of Modern Neurosurgery, vol. 08, no. 01, pp. 57-71, 2018, doi: 10.4236/ojmn.2018.81004.
[17] O. H. Khan and M. R. Del Bigio, "Experimental models of hydrocephalus," in Handbook of Experimental Neurology: Methods and Techniques in Animal Research, M. Fisher and T. Tatlisumak Eds. Cambridge: Cambridge University Press, 2006, pp. 457-471.
[18] O. Bloch, K. I. Auguste, G. T. Manley, and A. S. Verkman, "Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice," J Cereb Blood Flow Metab, vol. 26, no. 12, pp. 1527-37, Dec 2006, doi: 10.1038/sj.jcbfm.9600306.
[19] D. Wang et al., "Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency," Molecular and Cellular Neuroscience, vol. 46, no. 1, pp. 318-324, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.mcn.2010.10.003.
[20] L. da Silva Lopes, I. Slobodian, and M. R. Del Bigio, "Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin," Experimental Neurology, vol. 219, no. 1, pp. 187-196, 2009/09/01/ 2009, doi: https://doi.org/10.1016/j.expneurol.2009.05.015.
[21] J. Li et al., "Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space," Experimental Neurology, vol. 211, no. 2, pp. 351-361, 2008/06/01/ 2008, doi: https://doi.org/10.1016/j.expneurol.2007.12.030.
[22] I. Jusue-Torres et al., "A Novel Experimental Animal Model of Adult Chronic Hydrocephalus," Neurosurgery, vol. 79, no. 5, pp. 746-756, Nov 2016, doi: 10.1227/NEU.0000000000001405.
[23] L. Juge, A. C. Pong, A. Bongers, R. Sinkus, L. E. Bilston, and S. Cheng, "Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus," PLoS One, vol. 11, no. 2, p. e0148652, 2016, doi: 10.1371/journal.pone.0148652.
[24] B. T. Andrews, M. Levy, T. K. McIntosh, and L. H. Pitts, "An epidural intracranial pressure monitor for experimental use in the rat," Neurological research, vol. 10, no. 2, pp. 123-126, 1988.
[25] J. S. Lin and J. H. K. Liu, "Circadian Variations in Intracranial Pressure and Translaminar Pressure Difference in Sprague-Dawley Rats," Investigative Ophthalmology & Visual Science, vol. 51, no. 11, pp. 5739-5743, 2010, doi: 10.1167/iovs.10-5542.
[26] A. V. Shulyakov, R. J. Buist, and M. R. Del Bigio, "Intracranial Biomechanics of Acute Experimental Hydrocephalus in Live Rats," Neurosurgery, vol. 71, no. 5, pp. 1032-1040, 2012, doi: 10.1227/NEU.0b013e3182690a0c.
[27] P. Lackner, A. Vahmjanin, Q. Hu, P. R. Krafft, W. Rolland, and J. H. Zhang, "Chronic hydrocephalus after experimental subarachnoid hemorrhage," (in eng), PloS one, vol. 8, no. 7, pp. e69571-e69571, 2013, doi: 10.1371/journal.pone.0069571.
[28] M. Uldall, M. Juhler, A. D. Skjolding, C. Kruuse, I. Jansen-Olesen, and R. Jensen, "A novel method for long-term monitoring of intracranial pressure in rats," Journal of Neuroscience Methods, vol. 227, pp. 1-9, 2014/04/30/ 2014, doi: https://doi.org/10.1016/j.jneumeth.2014.01.036.
[29] S. Eftekhari, C. S. J. Westgate, K. P. Johansen, S. R. Bruun, and R. H. Jensen, "Long-term monitoring of intracranial pressure in freely-moving rats; impact of different physiological states," (in eng), Fluids and barriers of the CNS, vol. 17, no. 1, pp. 39-39, 2020, doi: 10.1186/s12987-020-00199-z.
[30] H. T. Nia, L. Han, Y. Li, C. Ortiz, and A. Grodzinsky, "Poroelasticity of cartilage at the nanoscale," (in eng), Biophys J, vol. 101, no. 9, pp. 2304-2313, 2011, doi: 10.1016/j.bpj.2011.09.011.
[31] M. T. J. J. M. Punter, B. E. Vos, B. M. Mulder, and G. H. Koenderink, "Poroelasticity of (bio)polymer networks during compression: theory and experiment," Soft Matter, 10.1039/C9SM01973A vol. 16, no. 5, pp. 1298-1305, 2020, doi: 10.1039/C9SM01973A.
[32] J. A. Pedersen, F. Boschetti, and M. A. Swartz, "Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix," Journal of Biomechanics, vol. 40, no. 7, pp. 1484-1492, 2007/01/01/ 2007, doi: https://doi.org/10.1016/j.jbiomech.2006.06.023.
[33] M. Kaczmarek, R. P. Subramaniam, and S. R. Neff, "The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry," Bulletin of Mathematical Biology, vol. 59, no. 2, pp. 295-323, 1997/03/01/ 1997, doi: https://doi.org/10.1016/S0092-8240(96)00073-0.
[34] J. R. Hans, G. Robert, S. Maria, and K. Igor, "Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema," (in English), Journal of Neurosurgery, vol. 46, no. 1, pp. 24-35, 1977, doi: 10.3171/jns.1977.46.1.0024.
[35] Z. Molnár, "A hydroelastic model of hydrocephalus," Journal of Fluid Mechanics, vol. 539, pp. 417-443, 09/25 2005, doi: 10.1017/S0022112005005707.
[36] C. D. Bertram and M. Heil, "A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis," Journal of Biomechanical Engineering, vol. 139, no. 1, 2016, doi: 10.1115/1.4034657.
[37] C. A. Cuenod and D. Balvay, "Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI," Diagnostic and Interventional Imaging, vol. 94, no. 12, pp. 1187-1204, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.diii.2013.10.010.
[38] J. Wang, M. A. Fernández-Seara, S. Wang, and K. S. S. Lawrence, "When Perfusion Meets Diffusion: in vivo Measurement of Water Permeability in Human Brain," Journal of Cerebral Blood Flow & Metabolism, vol. 27, no. 4, pp. 839-849, 2007/04/01 2006, doi: 10.1038/sj.jcbfm.9600398.
[39] S. Whitaker, "Flow in porous media I: A theoretical derivation of Darcy′s law," Transport in Porous Media, vol. 1, no. 1, pp. 3-25, 1986/03/01 1986, doi: 10.1007/BF01036523.
[40] G. O. Brown, "Henry Darcy and the making of a law," Water Resources Research, vol. 38, no. 7, pp. 11-1-11-12, 2002/07/01 2002, doi: 10.1029/2001WR000727.
[41] J. Kozeny, Über kapillare Leitung des Wassers im Boden: (Aufstieg, Versickerung u. Anwendung auf die Bewässerg) ; Gedr. mit Unterstützg aus d. Jerome u. Margaret Stonborsugh-Fonds. Hölder-Pichler-Tempsky, A.-G. [Abt.:] Akad. d. Wiss., 1927.
[42] R. P. Chapuis and M. Aubertin, "Predicting the coefficient of permeability of soils using the Kozeny-Carman equation," PolyPublie, Technical Report 2003. [Online]. Available: https://publications.polymtl.ca/2605/
[43] R. Al-Hussainy, H. J. Ramey, Jr., and P. B. Crawford, "The Flow of Real Gases Through Porous Media," SPE-18565-PA, vol. 18, no. 05, pp. 624-636, 1966/5/1/ 1966, doi: 10.2118/1243-A-PA.
[44] P. C. Carman, "Fluid flow through granular beds," Chemical Engineering Research and Design, vol. 75, pp. S32-S48, 1997/12/01/ 1997, doi: https://doi.org/10.1016/S0263-8762(97)80003-2.
[45] E. H. Starling, "On the Absorption of Fluids from the Connective Tissue Spaces," (in eng), J Physiol, vol. 19, no. 4, pp. 312-326, 1896, doi: 10.1113/jphysiol.1896.sp000596.
[46] C. F. Michel CC, "Microvascular permeability," Physiol Rev, pp. 703‐761, 1999, doi: 10.1152/physrev.1999.79.3.703.
[47] J. R. Levick and C. C. Michel, "Microvascular fluid exchange and the revised Starling principle," Cardiovasc Res, vol. 87, no. 2, pp. 198-210, 2010, doi: 10.1093/cvr/cvq062.
[48] E. F. J. Meijer, J. W. Baish, T. P. Padera, and D. Fukumura, "Measuring Vascular Permeability In Vivo," (in eng), Methods in molecular biology (Clifton, N.J.), vol. 1458, pp. 71-85, 2016, doi: 10.1007/978-1-4939-3801-8_6.
[49] A. Einstein, Investigations on the Theory of the Brownian Movement. Courier Corporation, 1956.
[50] K. Kono et al., "The Role of Diffusion-weighted Imaging in Patients with Brain Tumors," American Journal of Neuroradiology, vol. 22, no. 6, p. 1081, 2001. [Online]. Available: http://www.ajnr.org/content/22/6/1081.abstract.
[51] S. E. Maier, Y. Sun, and R. V. Mulkern, "Diffusion imaging of brain tumors," (in eng), NMR in biomedicine, vol. 23, no. 7, pp. 849-864, 2010, doi: 10.1002/nbm.1544.
[52] K. J. van Everdingen, J. van der Grond, L. J. Kappelle, L. M. P. Ramos, and W. P. T. M. Mali, "Diffusion-Weighted Magnetic Resonance Imaging in Acute Stroke," Stroke, vol. 29, no. 9, pp. 1783-1790, 1998/09/01 1998, doi: 10.1161/01.STR.29.9.1783.
[53] T. Wessels et al., "Contribution of Diffusion-Weighted Imaging in Determination of Stroke Etiology," American Journal of Neuroradiology, vol. 27, no. 1, p. 35, 2006. [Online]. Available: http://www.ajnr.org/content/27/1/35.abstract.
[54] B. Taouli and D.-M. Koh, "Diffusion-weighted MR Imaging of the Liver," Radiology, vol. 254, no. 1, pp. 47-66, 2010/01/01 2009, doi: 10.1148/radiol.09090021.
[55] S. Sinha, F. A. Lucas-Quesada, U. Sinha, N. DeBruhl, and L. W. Bassett, "In vivo diffusion-weighted MRI of the breast: potential for lesion characterization," (in eng), J Magn Reson Imaging, vol. 15, no. 6, pp. 693-704, 2002/06// 2002, doi: 10.1002/jmri.10116.
[56] E. O. Stejskal and J. E. Tanner, "Spin Diffusion Measurements: Spin Echoes in the Presence of a Time‐Dependent Field Gradient," The Journal of Chemical Physics, vol. 42, no. 1, pp. 288-292, 1965/01/01 1965, doi: 10.1063/1.1695690.
[57] P. W. Kuchel et al., "Stejskal–tanner equation derived in full," Concepts in Magnetic Resonance Part A, vol. 40A, no. 5, pp. 205-214, 2012/09/01 2012, doi: 10.1002/cmr.a.21241.
[58] P. J. Basser and D. K. Jones, "Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review," NMR in Biomedicine, vol. 15, no. 7‐8, pp. 456-467, 2002/11/01 2002, doi: 10.1002/nbm.783.
[59] T. Higaki et al., "Introduction to the Technical Aspects of Computed Diffusion-weighted Imaging for Radiologists," RadioGraphics, vol. 38, no. 4, pp. 1131-1144, 2018/07/01 2018, doi: 10.1148/rg.2018170115.
[60] D. Le Bihan, "Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging Can Tell Us about Tissue Structure," Radiology, vol. 268, no. 2, pp. 318-322, 2013/08/01 2013, doi: 10.1148/radiol.13130420.
[61] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, "MR imaging of intravoxel incoherent motions: application to diffusion and perfusion
in neurologic disorders," Radiology, vol. 161, no. 2, pp. 401-407, 1986/11/01 1986, doi: 10.1148/radiology.161.2.3763909.
[62] P. A. Yushkevich et al., "User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability," NeuroImage, vol. 31, no. 3, pp. 1116-1128, 2006/07/01/ 2006, doi: https://doi.org/10.1016/j.neuroimage.2006.01.015.
[63] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, "Meshlab: an open-source mesh processing tool," in Eurographics Italian chapter conference, 2008, vol. 2008: Salerno, pp. 129-136.
[64] C. Geuzaine and J.-F. Remacle, "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities," International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309-1331, 2009/09/10 2009, doi: 10.1002/nme.2579.
[65] "<199909_Quaterions and Rotation Sequences.pdf>."
[66] I. Amidror, "Scattered data interpolation methods for electronic imaging systems: a survey," Journal of electronic imaging, vol. 11, no. ARTICLE, pp. 157-76, 2002.
[67] J. M. Whedon and D. Glassey, "Cerebrospinal fluid stasis and its clinical significance," (in eng), Altern Ther Health Med, vol. 15, no. 3, pp. 54-60, May-Jun 2009. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/19472865
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842089/.
[68] D. Greitz, R. Wirestam, A. Franck, B. Nordell, C. Thomsen, and F. Ståhlberg, "Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited," (in eng), Neuroradiology, vol. 34, no. 5, pp. 370-380, 1992 1992, doi: 10.1007/bf00596493.
[69] D. A. Feinberg and A. S. Mark, "Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging," Radiology, vol. 163, no. 3, pp. 793-799, 1987/06/01 1987, doi: 10.1148/radiology.163.3.3575734.
[70] H. Al-Sarraf and L. Philip, "Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat," Brain Research, vol. 975, no. 1, pp. 179-188, 2003/06/13/ 2003, doi: https://doi.org/10.1016/S0006-8993(03)02632-5.
[71] H. Jian, D. Meixiu, G. Zhilin, and W. Bingyu, "A new rat model of chronic cerebral hypoperfusion associated with arteriovenous malformations," (in English), Journal of Neurosurgery, vol. 97, no. 5, pp. 1198-1202, 2002, doi: 10.3171/jns.2002.97.5.1198.
[72] K. P. McKeown and A. A. Shoukas, "Chronic isolation of carotid sinus baroreceptor region in conscious normotensive and hypertensive rats," American Journal of Physiology-Heart and Circulatory Physiology, vol. 275, no. 1, pp. H322-H329, 1998/07/01 1998, doi: 10.1152/ajpheart.1998.275.1.H322.
[73] P. Laurant, D. Hayoz, R. Brunner Hans, and A. Berthelot, "Effect of Magnesium Deficiency on Blood Pressure and Mechanical Properties of Rat Carotid Artery,"
Hypertension, vol. 33, no. 5, pp. 1105-1110, 1999/05/01 1999, doi: 10.1161/01.HYP.33.5.1105.
[74] J. S. Mishra, A. S. More, G. D. V. Hankins, and S. Kumar, "Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats," (in eng), Biol Reprod, vol. 96, no. 6, pp. 1221-1230, 2017, doi: 10.1093/biolre/iox043.
[75] H. Ohta, T. Ohki, Y. Kanaoka, M. Koizumi, and H. J. Okano, "Pitfalls of invasive blood pressure monitoring using the caudal ventral artery in rats," (in eng), Sci Rep, vol. 7, pp. 41907-41907, 2017, doi: 10.1038/srep41907.
[76] W. C. Theiss, W. W. Carmichael, J. Wyman, and R. Bruner, "Blood pressure and hepatocellular effects of the cyclic heptapeptide toxin produced by the freshwater cyanobacterium (blue - green alga) Microcystis aeruginosa strain PCC-7820," Toxicon, vol. 26, no. 7, pp. 603-613, 1988/01/01/ 1988, doi: https://doi.org/10.1016/0041-0101(88)90243-7.
[77] J. Bozena et al., "Increase in intra-abdominal pressure raises brain venous pressure, leads to brain ischaemia and decreases brain magnesium content," Magnesium Research, vol. 25, no. 2, pp. 89-98, 07/01 2012, doi: 10.1684/mrh.2012.0310.
[78] G. K. Povlsen, S. E. Johansson, C. C. Larsen, A. K. Samraj, and L. Edvinsson, "Early events triggering delayed vasoconstrictor receptor upregulation and cerebral ischemia after subarachnoid hemorrhage," (in eng), BMC Neurosci, vol. 14, pp. 34-34, 2013, doi: 10.1186/1471-2202-14-34.
[79] C. Hiploylee and F. Colbourne, "Intracranial pressure measured in freely moving rats for days after intracerebral hemorrhage," Experimental Neurology, vol. 255, pp. 49-55, 2014/05/01/ 2014, doi: https://doi.org/10.1016/j.expneurol.2014.02.017.
[80] H. F. Botfield et al., "A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus," Science Translational Medicine, vol. 9, no. 404, p. eaan0972, 2017, doi: 10.1126/scitranslmed.aan0972.
[81] A. H. Khasawneh, P. C. Alexandra, P. A. Zajciw, and C. A. Harris, "A preliminary exploration of acute intracranial pressure-cerebrospinal fluid production relationships in experimental hydrocephalus," (in eng), Brain Circ, vol. 6, no. 3, pp. 200-207, 2020, doi: 10.4103/bc.bc_42_20.
[82] M. R. Del Bigio, O. H. Khan, L. d. S. Lopes, and P. A. R. Juliet, "Cerebral White Matter Oxidation and Nitrosylation in Young Rodents With Kaolin-Induced Hydrocephalus," Journal of Neuropathology & Experimental Neurology, vol. 71, no. 4, pp. 274-288, 2012, doi: 10.1097/NEN.0b013e31824c1b44.
[83] F. Takei, K. Shapiro, A. Hirano, and I. Kohn, "Influence of the Rate of Ventricular Enlargement on the Ultrastructural Morphology of the White Matter in Experimental Hydrocephalus," Neurosurgery, vol. 21, no. 5, pp. 645-650, 1987, doi: 10.1227/00006123-198711000-00007.
[84] W. A. Evans, Jr., "AN ENCEPHALOGRAPHIC RATIO FOR ESTIMATING VENTRICULAR ENLARGEMENT AND CEREBRAL ATROPHY," Archives of Neurology & Psychiatry, vol. 47, no. 6, pp. 931-937, 1942, doi: 10.1001/archneurpsyc.1942.02290060069004.
[85] A. K. Toma, E. Holl, N. D. Kitchen, and L. D. Watkins, "Evans′ Index Revisited: The Need for an Alternative in Normal Pressure Hydrocephalus," Neurosurgery, vol. 68, no. 4, pp. 939-944, 2011, doi: 10.1227/NEU.0b013e318208f5e0.
[86] F. Gao, M. Zheng, Y. Hua, R. Keep, and G. Xi, "Acetazolamide Attenuates Thrombin-Induced Hydrocephalus," Acta Neurochirurgica, Supplementum, vol. 121, pp. 373-377, 01/01 2016, doi: 10.1007/978-3-319-18497-5_64.
[87] S. Okubo, J. Strahle, R. F. Keep, Y. Hua, and G. Xi, "Subarachnoid hemorrhage-induced hydrocephalus in rats," (in eng), Stroke, vol. 44, no. 2, pp. 547-550, 2013, doi: 10.1161/STROKEAHA.112.662312.
[88] H. C. Jones, H. K. Richards, R. M. Bucknall, and J. D. Pickard, "Local Cerebral Blood Flow in Rats with Congenital Hydrocephalus," Journal of Cerebral Blood Flow & Metabolism, vol. 13, no. 3, pp. 531-534, 1993/05/01 1993, doi: 10.1038/jcbfm.1993.69.
[89] K. W. Yeom, R. M. Lober, A. Alexander, S. H. Cheshier, and M. S. B. Edwards, "Hydrocephalus Decreases Arterial Spin-Labeled Cerebral Perfusion," American Journal of Neuroradiology, vol. 35, no. 7, p. 1433, 2014, doi: 10.3174/ajnr.A3891.
[90] M. M. Eric, B. Richard, and R. D. B. Marc, "Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis," (in English), Neurosurgical Focus FOC, vol. 7, no. 4, p. E13, 01 Oct. 1999 1999, doi: 10.3171/foc.1999.7.4.14.
[91] T. P. Naidich, F. Epstein, J. P. Lin, Kricheff, II, and G. M. Hochwald, "Evaluation of pediatric hydrocephalus by computed tomography," (in eng), Radiology, vol. 119, no. 2, pp. 337-345, 1976/05// 1976, doi: 10.1148/119.2.337.
[92] A. Cianfoni, "Periventricular edema in acute hydrocephalus," Brain Imaging with MRI and CT: An Image Pattern Approach, pp. 57-58, 01/01 2010, doi: 10.1017/CBO9781139030854.029.
[93] K. P. J. Braun et al., "Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS study," Brain Research, vol. 757, no. 2, pp. 295-298, 1997/05/23/ 1997, doi: https://doi.org/10.1016/S0006-8993(97)00345-4.
[94] L. A. Ray and J. J. Heys, "Fluid Flow and Mass Transport in Brain Tissue," Fluids, vol. 4, no. 4, 2019, doi: 10.3390/fluids4040196.
[95] P. Gideon, C. Thomsen, F. Gjerris, P. S. Sørensen, and O. Henriksen, "Increased Self-Diffusion of Brain Water in Hydrocephalus Measured by MR Imaging," Acta Radiologica, vol. 35, no. 6, pp. 514-519, 1994/01/01 1994, doi: 10.1080/02841859409173315.
[96] L. Guo, J. C. Vardakis, D. Chou, and Y. Ventikos, "A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport," International Journal of Engineering Science, vol. 147, p. 103204, 2020/02/01/ 2020, doi: https://doi.org/10.1016/j.ijengsci.2019.103204.
[97] J. C. Vardakis et al., "Fluid–structure interaction for highly complex, statistically defined, biological media: Homogenisation and a 3D multi-compartmental poroelastic model for brain biomechanics," Journal of Fluids and Structures, vol. 91, p. 102641, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.jfluidstructs.2019.04.008.
[98] L. Guo et al., "Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer′s disease," (in eng), Interface Focus, vol. 8, no. 1, pp. 20170019-20170019, 2018, doi: 10.1098/rsfs.2017.0019.
指導教授 周鼎贏 鄭劍廷 審核日期 2020-12-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明