博碩士論文 107326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.141.41.187
姓名 高佳君(Chia-Chun Kao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用無機聚合物技術穩定受重金屬污染底泥之可行性研究
(Feasibility of Heavy Metal Contaminated Sediment Stabilzation by Geopolymer)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-5以後開放)
摘要(中) 本研究嘗試應用無機聚合物技術,在改變不同鹼活化劑之種類(如KOH及NaOH)及濃度(6M及12M),以及添加10%-50%偏高嶺土,藉以調整反應材料間之矽鋁比等條件,評估受重金屬污染底泥之穩定化成效。研究結果顯示,添加偏高嶺土可有效提升無機聚合物的機械性能,且可以有效穩定重金屬之溶出行為,其中12M NaOH鹼性活化劑之試驗條件,當偏高嶺土添加比例由10%增加至50%時,無機聚合物之試體抗壓強度,由幾近於無強度增加至52.88±2.68 kgf/cm2。根據無機聚合物重金屬序列萃取之穩定化成效分析結果顯示,以12M鹼性活化劑NaOH及添加50 %偏高嶺土的試驗條件為例,底泥中Zn之不穩定相態比例由1.96,降低至無機聚合物試體之0.08。此外,無機聚合物試體之重金屬毒性溶出濃度分析結果,亦均遠低於法規管制標準。整體而言,根據本研究初步成果,已成功驗證無機聚合物技術,可有效降低底泥重金屬之溶出濃度,達到重金屬穩定化之效果。
摘要(英) This research investigates the feasibility of heavy metal stabilization of sediment contaminated metals by geopolymer with changing different alkali activator types (e.g. KOH and NaOH) with different concentration (e.g. 6M and 12M). Meanwhile, to adjust the silica-to-aluminum (Si/Al ratio) ratio with controlling 10%~50% metakaolin addition was also discussed.
The experimental results showed that adding metakaolin addition could effectively improve the geopolymer mechanical properties and stabilize the heavy metals leaching behavior. In the case of 12M NaOH alkaline activator addition, the compressive strength of geopolymer was increased from nearly zero to 52.88±2.68 kgf/cm2 with metakaolin addition increasing from 10% to 50%. According to the sequential extraction analysis results, in the case of 12M NaOH alkaline activator and 50% metakaolin addition, the unstable Zn fraction of the contaminated sediment was decreased from 1.96 to 0.08. Meanwhile, the toxicity characteristics leaching procedure (TCLP) concentration results of tested heavy metal in the geopolymer was lower than that of the relevant regulations thresholds. In summary, based on the preliminary results of this research, it has been successfully verified that the geopolymer technology could effectively reduce the leaching concentration of heavy metals in sediments and achieve the heavy metals stabilization.
關鍵字(中) ★ 無機聚合物
★ 底泥
★ 重金屬
★ 偏高嶺土
關鍵字(英) ★ Geopolymer
★ sediment
★ heavy metal
★ metakaolin
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 前言 1
第二章 文獻回顧 5
2-1底泥之定義 5
2-2 底泥污染概述 5
2-2-1 國外底泥污染概況 6
2-2-2 國內底泥污染概況 7
2-3 底泥之重金屬 11
2-3-1底泥之重金屬污染物 11
2-3-2 重金屬之鍵結型態 11
2-3-3 環境風險評估指數 12
2-3-4國內外污染底泥法規與指標 13
2-4底泥污染整治技術 15
2-5無機聚合物技術 24
2-5-1無機聚合物技術之原理與特性 24
2-5-2影響無機聚合物作用之因素 27
2-5-3無機聚合物之特性 32
2-6 無機聚合物應用時機與發展前景 40
2-6-1 國內無機聚合物研究 40
2-6-2 無機聚合物實際應用 45
第三章 研究材料與方法 49
3-1實驗材料 49
3-2實驗條件及流程 50
3-3分析原料基本特性分析 53
3-3-1 試驗材料基本特性分析 53
3-3-2 無機聚合物材料特性分析 56
3-3-3 無機聚合材料晶相及結構分析 57
第四章 結果與討論 59
4-1材料之基本特性分析 59
4-1-1 基本特性分析 59
4-1-2 物種鑑定及微觀結構分析 61
4-2無機聚合物材料特性分析結果 64
4-2-1 抗壓強度分析結果 64
4-2-2 物種鑑定分析結果 70
4-2-3 官能基鑑定分析結果 72
4-2-4 微觀結構分析結果 78
4-2-5毒性溶出試驗之分析結果 82
4-3 無機聚合物穩定性指標分析結果 83
4-3-1 重金屬相態分析結果 83
4-3-2 重金屬相態穩定性結果 89
4-3-3 重金屬風險評估指數 99
第五章 結論與建議 101
5-1 結論 101
5-2 建議 103
參考文獻 105
參考文獻 Abel, S., Nybom, I., Mäenpää, K., Hale, S. E., Cornelissen, G., Akkanen, J., 2017, Mixing and capping techniques for activated carbon based sediment remediation – Efficiency and adverse effects for Lumbriculus variegatus,Water Research, 114, 104–112.
Adriaens P, M-Y. Li, and A.M., 2006, Michalak Scaling methods of sediment bioremediation processes and application, Engineering in Life Sciences 3:21-227.
Al-Harahsheh, M. S., 2015, Fly ash based geopolymer for heavy metal removal: A case study on copper removal, Journal of Environmental Chemical Engineering 3(3): 1669-1677.
Ali, M. M., Ali, M. L., Islam, M. S., Rahman, M. Z., 2016, Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management, 5, 27–35..
Amec Foster Wheeler.[online]Available at:https://www.woodplc.com/ ,July,2020
Arulrajah, A., Yaghoubi, M., Disfani, M. M., Horpibulsuk, S., Bo, M. W., Leong, M., 2018, Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing, Soils and Foundations 58(6): 1358-1370.
Aygörmez, Y., Canpolat, O., Al-mashhadani Mukhallad M., 2020, Assessment of geopolymer composites durability at one year age, Journal of Building Engineering, 101453.
Bakharev, T., 2005, Resistance of geopolymer materials to acid attack, Cement and Concrete Research, 35(4), 658–670.
Bakharev, T., Sanjayan, J. G., Cheng, Y.-B., 2002, Sulfate attack on alkali-activated slag concrete, Cement and Concrete Research, 32(2), 211–216.
Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., Provis, J. L, 2012, Performance of alkali-activated slag mortars exposed to acids, Journal of Sustainable Cement-Based Materials, 1(3), 138–151.
Burton, G. Allen, Jr., 2002, Sediment Quality in Use Around the World, Institute for Environmental Quality, Wright State University.
Cai, J., Li, X., Tan, J., Vandevyvere, B., 2020, Thermal and compressive behaviors of fly ash and metakaolin-based Geopolymer, Journal of Building Engineering, 101307.
Chareerat, T., Lee-Anansaksiri, A., Chindaprasirt, P., 2006, Syntheses of high calcium fly ash and calcined kaolin geopolymer mortar, International Conference of Concrete Geopolymer, Khon Kaen Thailand, pp. 327–335.
Chen, J.-H., Huang, J.-S., Chang, Y.-W., 2011, Use of reservoir sludge as a partial replacement of metakaolin in the production of Geopolymers, Cement and Concrete Composites, 33(5), 602–610.
Cheng Yong, H., Yun Ming, L., Al Bakri Abdullah, M. M., Hussin, K., 2015, Fire Resistant Properties of Geopolymers: A Review., Key Engineering Materials, 660, 39–43.
Clu-In[online]Available at:https://clu-in.org/products/citguide/ ,July,2020
Davidovits, J, M Davidovits, N Davidovits, 1994, Process for obtaining a geopolymeric alumino-silicate and products thus obtained, US Patent 5,342,595.
Davidovits, J, 1991, Geopolymers: inorganic polymeric new materials, Journal of Thermal Analysis and calorimetry 37 (8), 1633-1656.
Davidovits, J., 1999, Chemistry of Geopolymeric Systems Terminology. Proceedings of Geopolymer, International Conference, France.
Davidovits, J., Davidovits, M., 1988, Geopolymer room temperature ceramic matrix for composites, Ceram. Eng. Sci. Proc. 9, 842–853.
Davidovits, J., 1982, The need to create a new technical language for the transfer of basic scientific information, Transfer and Exploitation of Scientific and Technical Information, EUR 7716, Luxembrourg, Commission of the European Communities.
Davidovits, J., 2003, Geopolymers. Journal of Thermal Analysis, 37(8), 1633–1656,1991.
Davidovits, J., 2008, Geopolymer Chemistry and Applications.
Davidovits, J., 2013, Geopolymer Cement, a review. Paper presented at the Institut Geopolymere, France.
Duncan, A. E., de Vries, N., Nyarko, K. B., 2018, Assessment of Heavy Metal Pollution in the Sediments of the River Pra and Its Tributaries, Water, Air, & Soil Pollution, 229(8).
Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., van Deventer, J. S. J., 2007, Geopolymer technology: the current state of the art, Journal of Materials Science, 42(9), 2917–2934.
Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., van Deventer, J. S. J., 2005, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47–58.
El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I., Khalili, F., 2015, Stabilization/solidification of heavy metals in kaolin/zeolite based Geopolymers, International Journal of Mineral Processing 137: 34-42.
Ferone, C., Colangelo, F., Cioffi, R., Montagnaro, F., Santoro, L., 2013, Use of reservoir clay sediments as raw materials for geopolymer binders, Advances in Applied Ceramics, 112(4), 184–189.
Ferone, C., Liguori, B., Capasso, I., Colangelo, F., Cioffi, R., Cappelletto, E., Di Maggio, R., 2015, Thermally treated clay sediments as geopolymer source material, Applied Clay Science, 107, 195–204.
Freire, A. L., Moura-Nickel, C. D., Scaratti, G., De Rossi, A., Araújo, M. H., De Noni Júnior, A., de Fátima Peralta Muniz Moreira, R., 2020, Geopolymers Produced with Fly Ash and Rice Husk Ash Applied to CO2 Capture, Journal of Cleaner Production, 122917.
Ghadir, P. and N. Ranjbar, 2015, Clayey soil stabilization using geopolymer and Portland cement, Construction and Building Materials 188: 361-371.
Gilmour, C., Bell, J. T., Soren, A. B., Riedel, G., Riedel, G., Kopec, A. D., Bodaly, R. A., 2018, Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment. Science of The Total Environment, 640-641, 555–569.
Görhan, G., Kürklü, G., 2014, The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures, Composites Part B: Engineering, 58, 371–377.
Gupta, A., 2020, Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Materials Today: Proceedings.
Hawa, A., Tonnayopas, D., Prachasaree, W., Taneerananon, P., 2013, Development and Performance Evaluation of Very High Early Strength Geopolymer for Rapid Road Repair, Advances in Materials Science and Engineering, 1–9.
Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., Khairul Nizar, I. et al., 2012, Study on solids-to-liquid and alkaline activator ratios on kaolin-based Geopolymers, Construction and Building Materials, 35, 912–922.
Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., Ariffin, M. A. M., 2016, Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar, Ain Shams Engineering Journal.
Inomat [online]Available at:https://www.inomat.de/index.php/de/ ,July,2020
Jersak, J., Göransson,G., Ohlsson,Y., Larsson,L., Flyhammar,P., Lindh,P., 2016, In-situ capping of contaminated sediments Method overview.
Joussein, E., Soubrand, M., Pascaud, G., Cogulet, A., Rossignol, S., 2019, Immobilization of Pb from mine sediments in metakaolin-based geomaterials, Environmental Science and Pollution Research.
Kaur, M., Singh, J., Kaur, M., 2018, Synthesis of fly ash based geopolymer mortar considering different concentrations and combinations of alkaline activator solution, Ceramics International, 44(2), 1534–1537.
Kenne Diffo, B.B., Elimbi, A., Cyr, M., Dika Manga, J., Tchakoute Kouamo, H., 2015, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, J. Asian Ceram. Soc. 3, 130–138.
Khatib, J. M., Baalbaki, O., ElKordi, A. A., 2018, Metakaolin. Waste and Supplementary Cementitious Materials in Concrete, 493–511.
Kiventerä, J., Lancellotti, I., Catauro, M., Poggetto, F. D., Leonelli, C.,and Illikainen, M, 2018, Alkali activation as new option for gold mine tailings inertization, Journal of Cleaner Production,Vol 187, pp76-84.
Komnitsas, K., Zaharaki, D., 2007, Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261–1277.
Kutuniva, J., Mäkinen, J., Kauppila, T., Karppinen, A., Hellsten, S., Luukkonen, T., Lassi, U., 2019, Geopolymers as active capping materials for in situ remediation of metal(loid)-contaminated lake sediments, Journal of Environmental Chemical Engineering, 7(1).
Kwok, K. W. H., Batley, G. E., Wenning, R. J., Zhu, L., Vangheluwe, M., Lee, S., 2013, Sediment quality guidelines: challenges and opportunities for improving sediment management. Environmental Science and Pollution Research, 21(1), 17–27.
Li, F., Xiao, M., Zhang, J., Liu, C., Qiu, Z., Cai, Y., 2018, Spatial Distribution, Chemical Fraction and Fuzzy Comprehensive Risk Assessment of Heavy Metals in Surface Sediments from the Honghu Lake, China. International Journal of Environmental Research and Public Health, 15(2), 207.
Li, G., Wang, B., Liu, H., 2019, Properties of Alkali-activated Yellow River Sediment-slag Composite Material, Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(1), 114–121.
Literathy, P., Nasser Ali, L., Zarba, M. A. and Ali, M. A., 1987, The role and problems of monitoring bottom sediment for pollution assessment in the coastal marine environment, Water Science and Technology, 19, 781-792.
Lofrano, G., Libralato, G., Minetto, D., De Gisi, S., Todaro, F., Conte, B., Notarnicola, M. et al., 2017, In situ remediation of contaminated marinesediment: an overview, Environ Sci Pollut Res Int 24(6): 5189-5206.
Mainmark.[online]Available at:https://mainmark.com/ ,July,2020
Merabtene, M., Kacimi, L., Clastres, P., 2019, Elaboration of geopolymer binders from poor kaolin and dam sludge waste, Heliyon, 5(6), e01938.
Milliken [online]Available at:http://frettage.fr/en/produit/geospray ,July,2020
Mulligan, C. N., Yong, R. N., Gibbs, B. F., 2001, Remediation technologies for metal-contaminated soils and groundwater: an evaluation, Engineering Geology, 60(1-4),193–207.
Muñiz-Villarreal, M. S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J. R., Reyes-Araiza, J. L., Rubio-Ávalos, J. C. et al., 2011, The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer, Materials Letters, 65(6), 995–998.
Nguyen, T. T. H., Zhang, W., Li, Z., Li, J., Ge, C., Liu, J.et al, 2016, Assessment of heavy metal pollution in Red River surface sediments, Vietnam. Marine Pollution Bulletin, 113(1-2), 513–519.
Novais, R. M., Ascensão, G., Seabra, M. P., Labrincha, J. A., 2016, Waste glass from end-of-life fluorescent lamps as raw material in Geopolymers, Waste Management, 52, 245–255.
Olsta, J. T., 2007, In-Situ Capping of Contaminated Sediments with Reactive Materials, Ports,2007.
Ouellet-Plamondon C., Habert G., 2014, Life Cycle Assessment (LCA) of alkali-activated cements and concretes, Handbook of Alkali Activated Cements, Mortars and Concretes, ed. by Pacheco-Torgal et al., Woodhead Publishing.
Palomo, A., Macias, A., Blanco, M.T., Puertas, F., 1992, Physical, chemical and mechanical characterization of Geopolymer, In: Proceedings of the 9th International congress on the Chemical of Cement, pp. 505–511.
Panagiotopoulou, C., Kontori, E., Perraki, T., Kakali, G., 2006, Dissolution of aluminosilicate minerals and by-products in alkaline media, Journal of Materials Science, 42(9), 2967–2973.
Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Sankar, D. B., Reddy, T. V. K., 2017, Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications, Environmental Geochemistry and Health, 40(2), 609–623.
Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanette, M.L.; Orio, A., 1985, Heavy metal speciation in the sediments of Northern Adriatic Sea—A new approach for environmental toxicity determination,In Heavy Metal in the Environment 2; Lakkas, T.D., Ed.; CEP Consultants Limited: Edinburgh, Scotland, pp. 454–456.
Phair, J. W., Van Deventer, J. S. J., 2001, Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers, Minerals Engineering, 14(3), 289–304.
Prud’homme, E., Michaud, P., Joussein, E., Peyratout, C., Smith, A., Rossignol, S., 2011, In situ inorganic foams prepared from various clays at low temperature., Applied Clay Science 51(1-2): 15-22.
Pyromeral [online]Available at:http://www.pyromeral.com/,July,2020
Rađenović, D., Kerkez, Đ., Pilipović, D. T., Dubovina, M., Grba, N., Krčmar, D., Dalmacija, B., 2019, Long-term application of stabilization/solidification technique on highly contaminated sediments with environment risk assessment, Science of The Total Environment,186-195.
Rattanasak, U., Chindaprasirt, P., 2009, Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078.
Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P., 1999, Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring, 1(1), 57–61.
Rocha, T. da S., Dias, D. P., França, F. C. C., Guerra, R. R. de S., Marques, L. R. da C. de O., 2018, Metakaolin-based geopolymer mortars with different alkaline activators (Na + and K + ), Construction and Building Materials, 178, 453–461.
Rovnaník, P., 2010, Effect of curing temperature on the development of hard structure of metakaolin-based Geopolymer, Construction and Building Materials, 24(7), 1176–1183.
Sanni,S.H., Khadiranaikar,R.B., Performance of alkaline solutions on grades of geopolymer concrete, IC-RICE Conference Issue,366-371, Gulbarga Karnataka India,2013/11.
Saxena, S.K., Kumar, M., & Singh, N. B., 2017, Fire Resistant Properties of Alumino Silicate Geopolymer cement Mortars, Materials Today: Proceedings, 4(4), 5605–5612.
Singh, K. P., Mohan, D., Singh, V. K., Malik, A., 2005, Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312(1-4), 14–27.
Swanepoel, J.C. and Strydom, C.A., 2002, Utilisation of Fly Ash in a Geopolymeric Material, Journal of Applied Geochemistry, 17, 1143-1148.
Taneez, M., Hurel, C., Mady, F., Francour, P., 2018, Capping of marine sediments with valuable industrial by-products: Evaluation of inorganic pollutants immobilization, Environmental Pollution, 239, 714–721.
Tessier, A., Campbell, P. G. C., Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51(7), 844–851.
Tom Glasby, John Day, Russell Genrich, Dr James Aldred, 2015, EFC Geopolymer Concrete Aircraft Pavements at Brisbane West Wellcamp Airport., Concrete 2015 Conference.
U.S. EPA, 1999, Monitored natural attenuation of petroleum hydrocarbons: U.S. EPA remedial technology fact sheet. EPA/600/F-98/601.
Van Jaarsveld, J. G. S.,Van Derventer, J. S. J., and Lorenzen,L., 1997, The potentiall use of geopolymeric materials to immobolise toxic metals: Part Ι Theory and applications, Minerals Engineering, vol. 10, pp. 659-669.
Vu, C. T., Lin, C., Nguyen, K. A., Shern, C.-C., Kuo, Y.-M., 2018, Ecological risk assessment of heavy metals sampled in sediments and water of the Houjing River, Taiwan. Environmental Earth Sciences.
Wan, Q., Rao, F., Song, S., & Zhang, Y., 2019, Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization., Journal of Materials Research and Technology.
Wang, L., Chen, L., Tsang, D. C. W., Li, J.-S., Yeung, T. L. Y., Ding, S., & Poon, C. S., 2018, Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. Science of The Total Environment, 631-632, 1321–1327.
Wang, L., Tsang, D. C. W., & Poon, C.-S., 2015, Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere, 122, 257–264.
Wang, Y., Han, F., Mu, J., 2018, Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers, Construction and Building Materials 160: 818-827.
Wangers.[online]Available at:https://www.wagner.com.au/ ,July,2020.
Xu, H., Van Deventer, J. S. J., 2000, The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266.
Yaghoubi, M., Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Darmawan, S., Wang, J., 2018, Impact of field conditions on the strength development of a geopolymer stabilized marine clay, Applied Clay Science.
Zeobond [online]Available at:http://www.zeobond.com/products-e-crete.html ,July,2020
Zhang, Y., Wei, S., 2006, Fly ash based geopolymer concrete.” Indian Concr. J. 1–5.
Zhang, Z., Wang, H., Zhu, Y., Reid, A., Provis, J. L., Bullen, F., 2014, Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science, 88-89, 194–201.
Zhuang, Q., Li, G., Liu, Z., 2018, Distribution, source and pollution level of heavy metals in river sediments from South China, CATENA, 170, 386–396.
丁昱,席行正,應用活性覆蓋法針對污染底泥中有害物質溶出抑制介紹,土木水利,44卷,6期,P36-42,2017。
王昱仁,發泡飛灰無機聚合物之隔熱性能研究,碩士論文,國立臺北科技大學土木工程系土木與防災碩士班,2017。
王智緯,好氧降解對地下水中BTEX污染團之影響,碩士論文,國立交通大學土木工程學系,2011。
吳冠龍,以變高嶺土製成無機聚合樹脂應用於混凝土裂縫修補之研究,碩士論文,國立臺北科技大學材料及資源工程系,2008。
呂軒志,蕭宇翔,王泰典,鄭大偉,翁祖炘,無機聚合物在混凝土裂縫修補應用之探討,2008岩盤工程研討會,2008。
李怡華,應用無機聚合物技術探討都市垃圾焚化飛灰無害化之可行性研究,碩士論文,國立中央大學環境工程研究所,2017。
李明霖,無機聚合物吸附重金屬之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,2007。
李明霖,鄭大偉,無機聚合物吸附重金屬之研究,第七屆資源與環境學術研討會,台灣花蓮,2005。
李海洪,徐惠忠,高原,劉子全,閻逢元「礦物聚合物材料的研究進展,機械工程材料,第30卷,第6期,第1-3頁,2006。
李皓瀅,阿公店溪水體、底泥重金屬污染之調查,碩士論文,國立高雄海洋科技大學海洋環境工程研究所,2015。
周綵蓉,江康鈺,陳雅馨,呂承翰,李怡華,2016,廢棄保溫材料製備為無機聚合材料之特性研究評估,105年產業溫室氣體減量成果發表暨綠色技術與工程實務研討會。
底泥品質檢測資訊公開網,網頁資料,網址:https://sed.epa.gov.tw/Sediments_Public/,網頁擷取日期:2019年8月
林凱隆,許皓翔,鄭大偉,黃兆龍,鹼活化偏高嶺土-廢玻璃無機聚合物之研究,2011區域與環境資源永續發展研討會,台灣台北,2011。
邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,碩士論文,國立臺灣科技大學營建工程系,2012。
凌彗紋,以生物淋溶法處理受重金屬污染之河川底泥過程中底泥物化因子的變化,碩士論文,嘉南藥理科技大學環境工程與科學系碩士班,2004。
桃園市水環境保育網路平台,網頁資料,網址:http://web.tydep.gov.tw/08ACC/statistics/p1.html,網頁擷取日期:2020年7月
郝漢舟,陳同斌,靳孟貴,雷梅,劉成武,祖文普,黃莉敏,重金屬污染土壤穩定/固化修復技術研究進展,應用生態學報,第 22卷,第3期,2011。
張書奇,余光昌,蔡利局,陳姿文,江蓬鈺,河川底泥污染整治技術研究-以二仁溪為例,工業污染防治,第121期,第145-165頁,2012。
許正衍,偏高嶺土基無機聚合物及其應用於接合氧化鋁之研究,碩士論文,國立台灣大學材料科學與工程學研究所,2015。
許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,碩士論文,國立宜蘭大學環境工程學系碩士班,2012。
許閎智,無機聚合物添加飛灰材料之開發研究,碩士論文,國立臺北科技大學土木與防災研究所,2013。
陳冠佑,水庫淤泥添加無機聚合材之應用探討,碩士論文,國立臺北科技大學土木工程系土木與防災碩士班,2017。
陳彥智,多孔性材料之吸音與隔音性質探討,碩士論文,國立成功大學土木工程學系,2014。
陳清林,稻殼製成輕質無機聚合物之研究,碩士論文,正修科技大學營建工程研究所,2017。
傅子龍,臺灣大漢溪底泥重金屬含量調查與可能污染源之探討,碩士論文,國立臺灣大學農業化學研究所,2016。
景宏君,景宏彬,艾 濤,楊宗斌,地質聚合物隧道防火塗料配方設計及應用,築路機械與施工機械化,第11期,72-76頁,2017。
馮長治,水庫淤泥製成輕質無機聚合物,碩士論文,國立成功大學資源工程學系,2016。
楊奉儒,周佳靜,陳清齊,以偏高嶺土製備無機聚合建材之研究,2007台灣環境資源永續發展研討會,台灣中壢,2007。
蔡志達,李韋皞,鄭大偉,吳佳正,徐登科,張祖恩「透過冷壓技術資源化無機聚合轉爐石砂漿作為高壓地磚,2019資源與環境學術研討會,台灣花蓮,163-178,2019。
鄭大偉,李韋皞,胡庭凱,林冠宇,蔡志達,吳佳正,徐登科,許伯良,張祖恩,林凱隆,陳貞光,轉爐石安定化及資源化新技術-無機聚合技術,鑛冶,第62卷,第2期,第40 – 52,2018
鄭大偉,無機聚合技術的發展應用及回顧,礦冶,第54卷,第1期,第140-157,2010。
鄭大偉,蔡志達,李韋皞,吳佳正,無機聚合混凝土在國內應用的實例,土木水利,47卷,2期,pp. 36-40,2020。
戴于盛,鄭大偉,柯明賢,無機聚合綠色水泥應用於固化焚化飛灰之研究,中華民國環境工程學會2012廢棄物處理技術研討會,台灣中壢,2012。
鍾清汶,鄭大偉,無機聚合固化/穩定化焚化飛灰之研究,103年環保技術與工程實務研討會,台灣台北,2014。
羅煥琳,林登峰,陳仰賢,謝傑龍,油污染黏土應用於無機聚合物材料之研究,第十屆中華民國結構工程研討會,台灣桃園,2010。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2020-11-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明