博碩士論文 107323088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.141.38.5
姓名 黃天賜(Tain-Shi Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 單源熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究
(The Study of Single-source Vacuum Deposition of Inorganic Perovskite Thin Film and Light Emitting Diode)
相關論文
★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究★ 水溶液法製備CsxPbyBrz鈣鈦礦系材料之研究
★ CsPb(BrxI1-x)3@SiO2量子點薄膜之合成及其性質探討★ APTES製備CsPbBr3@SiO2量子點擴散粒子暨擴散膜之研究
★ 二氧化矽包覆鈣鈦礦量子點薄膜 暨擴散粒子之研究★ 高壓輔助熱退火製程改善全無機鈣鈦礦太陽能電池之研究
★ 雙源順序熱蒸鍍全無機混合鹵化物鈣鈦礦藍色發光二極體之研究★ 以高壓輔助熱退火製備高開關比之自供電全無機鈣鈦礦光電感測器
★ 不同熱處理製程對於全無機混合鹵化物鈣鈦礦 藍色發光二極體之研究★ 利用TPBi增益綠光鈣鈦礦電致發光元件效率之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全無機鹵化物鈣鈦礦材料,不僅具有良好的光電特性,還有良好的環境耐候性,因此大量的研究開始投入研究這個極具發展潛力的材料,將其用來提升太陽能電池與發光二極體等光電元件。目前大部分的製程以溶液旋塗法為主,但是薄膜的平整性及溶劑的汙染對元件影響極大,於是有人開始利用熱蒸鍍的方式製作。在本研究中我們亦選擇熱蒸鍍製程進行研究,不過有別於目前科學界常使用兩種原料的雙源共蒸鍍製程,我們則是利用單一蒸鍍源並且搭配CsPbBr3粉末,有效改善雙源共蒸鍍時必須很精準控制蒸鍍原料比例的問題。
本論文首先證明利用單源熱蒸鍍CsPbBr3粉末所得之薄膜品質優於單純將CsBr和PbBr2均勻混合的粉末;接著我們開始提升CsPbBr3薄膜的品質,改善薄膜中CsPbBr3的衍生相: CsPb2Br5與Cs4PbBr6,由於這兩者過量的存在可能會導致薄膜的電性變差,影響到發光二極體元件最終的效率,因此我們調整熱處理的溫度及時間,來消除薄膜中的衍生相,提升鈣鈦礦薄膜的品質,並且應用在發光二極體中。
除此之外,目前大部分的鈣鈦礦發光二極體之電子傳輸層與電洞傳輸層,仍使用有機材料,這些材料除了環境耐候性差以及價格昂貴之外,不論在製造還是丟棄時,對環境都有很大的污染性,為了改善這個問題,本研究採用低環境汙染、價格便宜且耐候性佳之氧化鋅與氧化鉬等金屬氧化物來取代有機電子傳輸層與電洞傳輸層,經過UPS的量測確定能階後,將其作為發光二極體的電子、電洞傳輸層。
本論文利用單源熱蒸鍍法製作高品質之鈣鈦礦(CsPbBr3)主動層薄膜, 並藉由熱蒸鍍金屬氧化物作為電子傳輸層(氧化鋅)與電洞傳輸層(氧化鉬),成功製作出在2.7V的電壓以及5.5mA的電流時時具有152cd / m2,EQE為2.7% 的全無機鈣鈦礦(CsPbBr3)發光二極體元件,研究採用全無機之製程與方法可提供未來從事相關研究人員參考與應用。
摘要(英) All-inorganic perovskite has not only good optoelectronic characteristics but great weather resistance, so lots of researches are being conducted on this material full of potential development to enhance optoelectronic devices such as solar cells and light-emitting diode(LED). We choose thermal evaporation likewise, but different from the two common materials used in dual source co-evaporation deposition, we opt for a single source with CsPbBr3 powder, which effectively solves the problem of accurate ratio control of evaporation material when conducting dual source co-evaporation deposition.
First, we prove that after single-source evaporation deposition the thin film’s quality of CsPbBr3 powder is better than the combination powder of CsBr and PbBr2. Then, we try to improve the quality of CsPbBr3 thin film to solve the derivative phase, CsPb2Br5 and Cs4PbBr6.The excessive amount of CsPb2Br5 and Cs4PbBr6 is likely to make the electrical property of thin film decline and affect the efficiency of LED; accordingly, we eliminate the derivative phase in the thin film and improve the quality by adjusting the temperature and timing of heat treatment, which is used in LED.
We used the metal oxides which are easily acquired and less pollutant, after their energy gap being confirmed through the measurement of UPS, are utilized to construct ETL and HTL in LED and then create a totally inorganic LED component. Under 2.7 volts and 5.5mA, the component has a luminance of 152cd/m2 and EQE is 2.7% shown on a luminance meter.
This study improves the manufacturing process by single-source evaporation deposition. Inorganic LED is created with a thin film whose quality is bettered through heat treatment and metal oxides which are easily acquired and less pollutant as the element in ETL and HTL. Most importantly, this is extremely helpful for the development of commercialization in the future.
關鍵字(中) ★ 鈣鈦礦
★ 單源熱蒸鍍
★ 鈣鈦礦薄膜
★ 發光二極體
關鍵字(英) ★ Perovskite
★ Single-source Vacuum Deposition
★ Perovskite Thin Film
★ Light Emitting Diode
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第1章緒論 1
1-1 前言 1
1-2 鈣鈦礦介紹 2
1-3 鈣鈦礦材料介紹 3
1-4 鹵化物鈣鈦礦薄膜製造與應用 6
1-4-1 一步溶液旋塗法 6
1-4-2 多步溶液沉積法 6
1-4-3 溶液-蒸鍍混合法 7
1-4-4 雙源共蒸鍍沉積法 8
1-4-5 雙源逐步沉積法 8
1-4-6 單源共蒸鍍沉積法 9
1-5 鈣鈦礦發光二極體的發展 10
1-6 研究動機 25
第2章實驗方法 26
2-1 實驗材料及儀器 26
2-1-1 實驗材料 26
2-1-2 實驗儀器 26
2-2 實驗步驟 28
2-2-1 ITO 導電玻璃基板清洗 28
2-2-2 二氧化鈦(TiO2)緻密層合成與塗佈 28
2-2-3 氧化鋅(ZnO)合成與塗佈 28
2-2-4 CsPbBr3 蒸鍍 28
2-2-5 MoOx 蒸鍍 28
2-2-6 碳膠刮塗 28
2-2-7 LED 元件量測 29
2-3 實驗分析方式 29
2-3-1 XRD 量測方式 29
2-3-2 UV-vis 量測方式 29
2-3-3 SEM量測方式 29
第3章結果與討論 30
3-1 CsPbBr3 粉末與CsBr + PbBr2 混合粉比較 30
3-2 CsPbBr3 薄膜分析 32
3-2-1 CsPbBr3 粉末使用效率 32
3-2-2 CsPbBr3 薄膜熱處理溫度 33
3-2-3 CsPbBr3 薄膜熱處理時間 34
3-3 UPS 分析 36
3-3-1LED 發光元件主動層 36
3-3-2 LED 發光元件電極替換 38
3-3-3 LED 發光元件電子傳輸層改善 38
3-3-4 LED 發光元件電洞傳輸層改善 40
3-4 LED 發光元件改善 42
3-4-1 LED 發光元件主動層厚度改良 42
3-4-2 LED 發光元件電子與電洞的電荷平衡改善 43
3-4-3 LED 發光元件發光面積改善 44
第4章結論 46
參考文獻 47
參考文獻 參考文獻
[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. AM. CHEM., vol. 131, no. 17, pp. 6050-6051, 2009.
[2] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci Rep., vol. 2, pp. 591, 2012.
[3] Z-K. Tan,R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler,F. Deschler, M. Price, A. Sadhanala, L. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” NATURE NANOTECHNOLOGY., vol. 9, pp. 687-692, 2014.
[4] H. L. WELLS, "Uber die Casium- und Kalium-Blei halogenide. ," Zeitschrift für anorganische Chemie., vol. 3.Issue 1, pp. 195-210, 1893.
[5] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett., vol. 15, no. 6, pp. 3692-6, Jun 10, 2015.
[6] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, “CsPbX3 Quantum Dots for Lighting and Displays :Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes,” Advanced Functional Materials., vol. 26, no. 15, pp. 2435-2445, 2016.
[7] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes,” J Phys Chem Lett., vol. 6, no. 21, pp. 4360-4, Nov 5, 2015.
[8] J. Burschka, N. Pellet, S-J. Moon, R. H-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” NATURE., vol. 499, pp. 316-319, 18, 7, 2013.
[9] L. G-Escrig, A. M-Sempere, M. Sessolo, and H. J. Bolink, “Mixed Iodide-Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics,” J. Phys. Chem., Lett, 6, pp. 3743−3748, 2015.
[10] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature., vol. 501, no. 7467, pp. 395-8, Sep 19, 2013.
[11] H-Y. Lin, C-Y. Chen, B-W. Hsu, Y-L. Cheng, W-L. Tsai, Y-C. Huang, C-S. Tsao and H-W. Lin, “Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand-Layer Rapid Deposition,” Adv. Funct. Mater., 1905163, pp. 7376-7378, 2019.
[12] G. Longo, L. G-Escrig, M. J. Degen, M. Sessolo and H. J. Bolink, “Perovskite solar cells prepared by flash evaporation,” Chem. Commun., 51, pp. 7376-7378, 2015.
[13] J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, S. Liu, “Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation,” Journal of Alloys and Compounds., 152903, 2019.
[14] H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. J. S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science., vol. 350, no. 6265, pp. 1222-1225, 2015.
[15] J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, and H. Zeng, “50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control,” Adv Mater., vol. 29, Issue. 5, pp.1603885 , 2017.
[16] X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, “Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer,” Nano Lett., 16, pp. 1415-1420, 2016.
[17] A. G. Ricciardulli, S. Yang, N. B. Kotadiya, G-J. A. H. Wetzelaer, X. Feng, and P. W. M. Blom, “Improved Hole Injection into Perovskite Light-Emitting Diodes Using A Black Phosphorus Interlayer,” Adv. Electron. Mater., 1800687, 2018.
[18] X. Zhang, C. Sun, Y. Zhang, H. Wu, C. Ji, Y. Chuai, P. Wang, S. Wen, C. Zhang, and W. W. Yu, “Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices,” J. Phys. Chem. Lett., 7, 22, pp. 4602-4610, 2016.
[19] Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, and G. Du, “High-Efficiency and Air-Stable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure,” Nano Lett., 17, pp. 313-321, 2017.
[20] H-S. Yun, K. Noh, J. Kim, S. H. Noh, G-H. Kim, W. Lee, H. B. Na, T-S. Yoon, J. Jang, Y. Kim, and S-Y. Cho, “Perovskite Quantum Dot Light-Emitting Diodes Using Atomic Layer Deposited Al2O3 and ZnO Interlayers,” PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS., Vol. 14, Issue. 1, pp. 1900573, 2019.
[21] Y. Shi, W. Wu, H. Dong, G. Li, K. Xi, G. Divitini, C. Ran, F. Yuan, M. Zhang, B. Jiao, X. Hou, and Z. Wu, “A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance,” Adv. Mater., Vol. 30, Issue. 25, pp. 1800251, 2018.
[22] Y. Hu, Q. Wang, Y. L. Shi, M. Li, L. Zhang, Z. K. Wang, and L. S. Liao, “Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes,” Journal of Materials Chemistry C., vol. 5, no. 32, pp. 8144-8149, 2017.
[23] F. Yuan, J. Xi, H. Dong, K. Xi, W. Zhang, C. Ran, B. Jiao, X. Hou, A. K-Y. Jen, and Z. Wu, “All-Inorganic Hetero-Structured Cesium Tin Halide Perovskite Light-Emitting Diodes With Current Density Over 900 A cm-2 and Its Amplified Spontaneous Emission Behaviors,” PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS., Vol. 12, Issue. 5, pp. 1800090, 2018.
[24] X. Lian, X. Wang, Y. Ling, E. Lochner, L. Tan, Y. Zhou, B. Ma, K. Hanson, and H.Gao, “Light Emitting Diodes Based on Inorganic Composite Halide Perovskites,” Adv. Funct. Mater., Vol. 29, Issue. 5, pp. 1807345, 2019.
[25] J. Li ,P. Du ,S. Li ,J. Liu ,M. Zhu ,Z. Tan ,M. Hu ,J. Luo ,D. Guo ,L. Ma ,Z. Nie ,Y. Ma ,L. Gao ,G. Niu ,J. Tang, “High‐Throughput Combinatorial Optimizations of Perovskite Light-Emitting Diodes Based on All‐Vacuum Deposition,” Adv. Funct. Mater., Vol. 29, Issue. 51, pp.1903607, 2019.
[26] M. Shin, H. S. Lee, Y. C. Sim, Y-H. Cho, K. C. Choi, and B. Shin, “Modulation of Growth Kinetics of Vacuum-Deposited CsPbBr3 Films for Efficient Light-Emitting Diodes,” ACS Appl. Mater. Interfaces., 12, pp. 1944-1952, 2020.
[27] P. Du, J. Li, L. Wang, J. Liu, S. Li, N. Liu, Y. Li, M. Zhang, L. Gao, Y. Ma, and J. Tang, “Vacuum-Deposited Blue Inorganic Perovskite Light-Emitting Diodes,” ACS Appl. Mater. Interfaces., Vol. 11, Issue. 50, pp. 47083-47090, 2019.
[28] S. Xie, A. Osherov, and V. Bulovc, “All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes,” APL Mater., Vol. 8, Issue. 5, pp. 051113, 2020.
[29] B. Han, Q. Shan, F. Zhang, J. Song, and H. Zeng, “Giant efficiency and color purity enhancement in multicolor inorganic perovskite light emitting diodes via heating assisted vacuum deposition,” Journal of Semiconductors., Vol. 41, No. 5, pp. 052205, 2020.
[30] Y. E. Ajjouri, F. Palazon, M. Sessolo, and H. J. Bolink, “Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites,” Chem. Mater., Vol. 30, Issue. 21, pp. 7423-7427, 2018.
[31] L. Nasi, D. Calestani, F. Mezzadri, F. Mariano, A. Listorti, P. Ferro, M. Mazzeo and R. Mosca, “All-Inorganic CsPbBr3 Perovskite Films Prepared by Single Source Thermal Ablation,” ORIGINAL RESEARCH., Vol. 8 , pp. 313, 2020.
[32] P. P. He, J. P. Zhou, L. Q. Yin, “The Degradation of High Power Gallium NitrideLight-emitting Diodes,” International Conference on Electronic Packaging Technology (ICEPT). IEEE., pp. 440-443, 2017.
指導教授 詹佳樺(Chia-Hua Chan) 審核日期 2021-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明