博碩士論文 106323024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.19.56.45
姓名 楊舜皓(Shun-Hao Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 考慮軸承撓性及間隙影響下擺線針輪傳動機構之動態負載分析
(Dynamic load analysis of Cycloid Pin-Wheel Drives considering the influences of bearing flexibility and clearance)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 擺線針輪機構又稱Cyclo 機構,相較於漸開線齒輪機構具有耐衝擊、承受高負載及使用壽命長等優點,在今日產業應用甚廣,如在自動化機械與土木機械等亦可見到。由於在真實狀況,擺線針輪機構中所有軸承為撓性且具有間隙,同時輸出軸爪銷為懸臂樑設計,使得與兩擺線盤接觸剛性不同。因此有必要瞭解在擺線盤偏心運動下,機構各接觸對受到動態負載之接觸特性,如兩盤扭力分配,軸承、擺線—針齒負載以及爪銷等負載變化,受到軸承撓性與間隙之影響。
本論文以ADAMS 動態分析軟體分析兩個不同減速比及背隙值案例。首先依據機構運動關係建立拘束條件,分析具加工及組裝誤差之擺線機構傳動在準靜態下的誤差變化,並與已有齒面接觸模型分析結果比較,確認具有高相似度。同時,亦得到準靜態下各接觸元件之負載。其中各接觸對的接觸剛性係由有限元素分析結果轉換而得。在動態下則探討不同轉速、考慮軸承是否為撓性及軸承間隙等3種條件在等轉速及等扭力工作狀況下,對擺線齒輪機構接觸對負載影響。最後則模擬擺線齒輪機構應用於自動化倉儲中的軌道式自走車以及土木機械中的混凝土泵,分別在增減速及週期性衝擊負載工作狀況下,各接觸對負載的變化特性。
從分析結果得知爪銷偏心誤差對於傳動誤差影響最大。在相同偏心誤差量下爪銷及針輪偏心對於整體負載影響較大。輸入、輸出軸支撐軸承撓度與間隙對兩擺線盤與針銷、爪銷之接觸負載分配特性影響相當大,不可忽略。
由分析結果可驗證,透過本研究所建立的ADAMS 動態分析方法,可以完整模擬擺線針輪機構在真實工作條件下,傳動誤差及各種動態條件下負載變化受到軸承撓度、間隙與加工、組裝誤差等因素的影響。
摘要(英) The cycloid pinwheel mechanism, also named as “Cyclo drive”, has better performance than involute gear mechanism, because of the advantages of good shock
absorbability, high load capacity and high life cycle. It’s nowadays widely applied in industry, for example automatic machinery and civil machinery. To meet the actual situations, all bearings in the mechanism are indeed flexible and have clearance. The pins of output shaft are designed as cantilever beam, so that the contact stiffness with the two cycloid discs are different. It is therefore necessary to explore how the contact characteristics of each contact pair of the mechanism, such as the torque distribution of the two cycloid discs, the load variation of bearings, cycloid-pins and pin-shaft, are influenced by the flexibility and clearance of bearings under the eccentric motion of the
cycloid disc.
Two types of cycloid gear mechanisms with different speed reduction ratios and backlashes are analyzed by using ADAMS dynamic analysis software in this thesis. At
first, Quasi-static transmission errors due to machining and assembly errors are calculated based on the constrains from working relations. The results are highly similar to the known results by using tooth contact analysis method. The quasi-static contact loads are also obtained, where the contact stiffness of each contact pair is calculated by FEM software. The influences of different speeds, flexibility and clearance of the
bearings on the dynamic contact loads in the gear mechanism are afterwards analyzed and discussed under the conditions of constant speed and transmitted torque. Finally,two application cases from rail-guided vehicle and concrete pump are simulated to explore the characteristics of the load variation of the contact pairs under the working conditions of motion with variable speed and periodical shock, respectively.
It can be learned from the analysis results that the eccentric error of the pin shaft has largest influence on the transmission error. The eccentric error of the pin shaft and the pin wheel affect strongly the contact loads with same error amount. Analysis results also show that the contact load distribution among the contact pairs in the two cycloidal discs, the pins and pin-shafts are influenced considerablly by flexibility and clearances of the support bearings for the input and output shaft.
It can be verified from the analysis results that the dynamic analysis approach using the ADAMS software proposed in the thesis can effectively simulated and analyzed the complete the cycloid pinwheel mechanism in real working conditions. The influences of flexibility and clearances of the bearings and the machining and assembly errors on the transmission errors and contact loads under any dynamic condition can be therefore
explored by the proposed approach.
關鍵字(中) ★ 擺線針輪機構
★ ADAMS
★ 傳動誤差
★ 軸承撓性
★ 動態負載分析
關鍵字(英) ★ Cycloid pinwheel mechanism
★ ADAMS
★ Transmission error
★ Bearing flexibility
★ Dynamic load analysis
論文目次 摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 viii
表目錄 xxiv
符號說明 xxvi
第 1 章 前言 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究目的 4
1.4 論文架構 5
第 2 章 擺線針輪機構與ADAMS介紹 6
2.1 擺線針輪機構設計 6
2.2 擺線輪廓修整型式 7
2.3 機構加工及組裝誤差 11
2.3.1 擺線輪廓偏心誤差 11
2.3.2 針輪尺寸及位置誤差 12
2.3.3 爪銷尺寸及位置誤差 14
2.3.4 擺線盤爪銷孔分布圓徑誤差 16
2.3.5 曲軸偏心量誤差 16
2.4 ADAMS軟體介紹 17
第 3 章 分析案例 19
3.1 案例說明 19
3.1.1 案例1 20
3.1.2 案例2 21
3.2 擺線針輪機構建構 22
3.2.1 幾何模型建構及拘束條件設定 22
3.2.2 軸承建構及選用 23
3.3 ADAMS多接觸對設定 24
3.3.1 接觸力計算原理 24
3.3.2 接觸精度設定 25
3.3.3 接觸力參數設定 26
3.4 求解器設定 28
第 4 章 傳動誤差分析 29
4.1 無誤差下 29
4.2 具第一盤擺線輪廓偏心誤差下 31
4.3 具針輪尺寸及位置誤差下 32
4.3.1 銷徑尺寸誤差 32
4.3.2 銷分布圓徑尺寸誤差 33
4.3.3 針輪偏心誤差 34
4.4 具爪銷尺寸及位置誤差下 35
4.4.1 爪銷徑尺寸誤差 35
4.4.2 爪銷分布圓徑尺寸誤差 36
4.4.3 爪銷偏心誤差 37
4.5 具擺線盤爪銷孔分布圓徑誤差下 38
4.6 具曲軸偏心量誤差下 39
4.7 小結 41
第 5 章 準靜態負載分析 42
5.1 無誤差下接觸負載分析 42
5.2 具第一盤擺線輪廓偏心誤差下 47
5.3 具針輪尺寸及位置誤差下 52
5.3.1 銷徑誤差 52
5.3.2 銷分布圓徑誤差 54
5.3.3 針輪偏心誤差 56
5.4 具爪銷尺寸及位置誤差下 60
5.4.1 爪銷徑誤差 60
5.4.2 爪銷分布圓徑誤差 62
5.4.3 爪銷偏心誤差 65
5.5 具擺線盤爪銷孔分布圓徑誤差下 69
5.6 具曲軸偏心量誤差下 72
5.7 小結 75
第 6 章 等轉速下考慮軸承撓性及間隙動態分析 76
6.1 無間隙且考慮支撐軸承為撓性下負載分析 77
6.1.1 500 rpm 77
6.1.2 3000 rpm 84
6.2 不同擺線支撐軸承間隙下負載分析 90
6.2.1 考慮擺線盤支撐軸承為撓性下 90
6.2.2 考慮支撐軸承皆為撓性下 98
6.2.3 考慮支撐軸承皆為撓性下且具CN等級間隙 105
6.2.4 ADAMS不同軸承間隙值影響性 113
6.3 綜合爪銷誤差下負載分析 114
6.3.1 考慮支撐軸承為撓性影響下 115
6.3.2 不同接觸力阻尼及軸承阻尼下 120
6.4 小結 124
第 7 章 衝擊負載下動態分析 125
7.1 500 rpm 126
7.2 3000 rpm 139
7.3 小結 153
第 8 章 增減速運動下動態分析 154
8.1 RGV行駛動力 154
8.2 以3-4-5多項式作為位移運動曲線 157
8.3 以3-4-5多項式作為速度運動曲線 176
8.4 小結 197
第 9 章 總結與未來展望 198
9.1 結論 198
9.2 未來展望 199
參考文獻 200
參考文獻 [1] L.K. Braren: “Gear Transmission”, US Patent 1694031,1928.
[2] R. Braren: “Cycloidal Gears”, US Patent 4050331,1977.
[3] Fong, Z. H.; Tsay, C. W.: “Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference”, J. CSME, Vol.21, No.4, pp.359-367,2000.
[4] 關天民,「擺線針輪行星傳動中擺線輪最佳修形量的確定方法」,中國機械工程,第13卷第10期811-813頁,2002。
[5] 關天民、彭永華、張東生、張錫生以及雷蕾,「針擺傳動中反弓齒廓的進一步研究」,大連鐵道學院學報,第26卷第4期,2005,17-20頁。
[6] 關天民、徐曉瑩、雷蕾,「針擺傳動中弓背齒廓的受力分析」,大連交通大學學報,第32卷第2期,24-32頁,2011。
[7] 黃重憲「具修整齒形擺線傳動器之曲面設計、齒形接觸分析與最佳修整參數設計的研究」,國立成功大學機械工程學系碩士論文,2006。
[8] Z.Y. Ren, S.M. Mao, W.C. Guo, Z. Guo: “Tooth modification and dynamic performance of the cycloidal drive”, Mechanical Systems and Signal Processing, Vol.85, pp.857-866,2017.
[9] L.-C. Chang, S.-J. Tsai and C.-H. Huang (2019). A study on tooth profile modification of cycloid planetary gear drive with tooth umber difference of two. Forschungim Ingenieurwesen, vol83, No 3, pp 409–424.
[10] 林灣松,「二階擺線機構之運動誤差分析與設計」,國立台灣大學機械工程學系碩士論文,2013。
[11] J.G. Blanche, D.C.H. Yang: “Cycloid Drives With Machining Tolerance”, Journal of Mechanisms Transmissions, and Automation in Design, No.3, Vol.111, pp.337-344,1989.
[12] D.C.H. Yang, J.G. Blanche: “Design and application guidelines for cycloid
drives with machining tolerances”, Mech Mach Theory, Vol.25, No.5,
pp.487-501,1990.
[13] 黃薇臻,「考慮主要誤差下具修整齒廓之擺線行星盤傳動機構之接觸特性」,國立中央大學機械工程學系碩士論文,2016。
[14] T. Mackic, M. Blagojevic, Z. Babic, N. Kostic: “Influence of design parameters on cycloid drive efficiency”, Journal of the Balkan Tribological Association, Vol.19, No.4, pp.497-507,2013.
[15] C. Gorla, P. Davoli, F. Rosa, C. Longoni: “Theoretical and Experimental Analysis of a Cycloidal Speed Reducer”, Journal of Mechanical Design, Vol.130, 112604 pp.1-8,2008.
[16] S.K. Malhotra, M.A. Parameswaran: “Analysis of a cycloid speed reducer”, Mechanism and Machine Theroy, Vol.18, No.6, pp.491-499,1983.
[17] S. Li: “Design and strength analysis methods of the trochoidal gear reducers”, Mechanism and Machine Theory 81, pp140-154,2014.
[18] Zeng, B. S.: “Force Analysis of a Cycloidal Speed Reducer Using Finite Element Method”, Master thesis, Department of Mechanical Engineering College of Engineering National Taiwan University,2014.
[19] H.L. Yu, J.H. Yi, X. Hu, P. Shi: “Study on teeth profile modification of cycloid reducer based on non-Hertz elastic contact analysis”, Mechanics Research Communicatins 48, pp.87-92,2013.
[20] X. Li, C. Li, Y. Wang, B. Chen, T.C. Lim: “Analysis of a Cycloid Speed Reducer Considering Tooth Profile Modification and Clearance-Fit Output Mechanism”, Journal of Mechanical Design, Vol.139, 03303 pp.1-12,2017.
[21] 吳思漢,「近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究」,國立中央大學機械工程學系博士論文,2009。
[22] S.J. Tsai, C.H. Huang, H.Y. Yeh, W.J. Huang : “Loaded tooth contact analysis of cycloid planetary gear drives”, doi:10.6567/iftomm.14th.wc.os6.014,2015.
[23] S.J. Tsai, W.J. Huang, C.H. Huang : “A Computerized Approach for Load Analysis of Planetary Gear Drives with Epitrochoid-Pin Tooth-pairs”, VDI-Berichte 2255.1., pp307-317,2015.
[24] Chmurawa, M. and Lokiec, A.: “Distribution of Loads in Cycloidal Planetary Gear (Cyclo) including Modification of Equidistant”, Proceedings of the 16th European Mechanical Dynamics User Conference,2001.
[25] LiXin Xu, YuHu Yang:“Dynamic modeling and contact analysis of a cycloidpin gearmechanism with a turning arm cylindrical roller bearing”, Mechanism and Machine Theory 104,2016.
[26] Thube, S. V. and Bobak, T. R.:“A Methodology for Identifying Defective Cycloidal Reduction Components Using Vibration Analysis and Techniques”, 08FTM02, AGAMA Fall Technical Meeting,2008.
[27] Thube, S. V. and Bobak, T. R.: “Dynamic Analysis of a Cycloidal Gearbox Using Finite Element Method”. 12FTM18, AGAMA Fall Technical Meeting,2012.
[28] Chiu-Fan Hsieh: “Traditional versus improved designs for cycloidal speed
reducers with a small tooth difference: The effect on dynamics”, Mechanism and Machine Theory 86,2015.
[29] 何勝勇、李偉,「行星擺線針輪機構虛擬樣機的建造與有限元分析」,中國農業大學機械工程學院碩士論文,2002。
[30] 張靖,「擺線行星盤傳動機構之動態負載分析」,國立中央大學機械工程學系碩士論文,2017。
[31] 蔡錫錚、黃勁儫、葉湘羭、黃薇臻,「擺線行星齒輪齒面受載接觸分析」,第十七屆全國機構與機器設計學術研討會,2014。
[32] Naunheimer, Bertsche, Ryborz, Novak:” Mediating the Power Flow”, Automotive Transmissions, pp73-82,1999.
[33] Rogers D: “B-spline Curves”, An introduction to NURBS, pp44-120,2000.
[34] 傅增棣,虛擬原型工作小組,電腦輔助工程設計-ADAMS基礎應用手冊,二版,高立圖書有限公司,台北線五股鄉,民國99年。
[35] 陳峰華,ADAMS 2018虛擬樣機技術從入門到精通,初版,清華大學出版社,中國北京清華大學,2019。
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明