博碩士論文 101383601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.149.252.207
姓名 范國雄(Pham Quoc Hung)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 發光二極管效率下降的數值研究
(Numerical study on the efficiency droop in InGaN/GaN Light-Emitting Diodes)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於低功耗和高能效,藍光發光二極管已成為替代傳統光源的新解決方案。然而,面臨的最大挑戰之一是效率下降,即隨著注入功率的增加,效率下降。
本文研究了相空間填充效應和電流擁擠效應對LED效率下降的影響。它是通過三維數值模擬預測的。本文還提出了一種改進的休克-里德-里爾霍爾係數公式,用於代表載流子壽命行為。在本文中,InGaN / GaN發光二極管中的傳統電子阻擋層被大小與n-pad相同的圓形代替。使用圓形,集總的在外部有源區域中較高,而在焊盤下方的有源區域中較低。顯然,由於焊盤下方有源區域的大部分發射都被焊盤吸收,因此,具有圓形的LED將具有更高的外部量子效率。
摘要(英) Blue Light-Emitting Diodes has become a new solution to replace the traditional light source due to low power consumption and high energy efficiency. However, one of the most challenges facing is the efficiency droop which is efficiency degradation with higher injected power.
This dissertation investigates the effect of phase-space filling effect and current crowding effect on the efficiency droop of Light-Emitting Diodes. It is predicted by a three-dimensional numerical simulation. This dissertation also suggests a modified formulation of the Shockley-Reed-Hall coefficient, which is proposed to represent the SRH carrier lifetime behavior. In this dissertation, the traditional elec-tron electron-blocking layer in InGaN/GaN light-emitting diodes is re-placed by a circular shaped EBL the same size as the n-pad. With the circular electron-blocking layer, the lumped internal quantum efficiency is higher in the outer active region and lower in the active region under the n-pad. Since most emissions from the active region under the n-pad are absorbed by the n-pad, obviously, the Light-Emitting Diodes with the circular shaped electron blocking layer will have a higher external quantum efficiency.
關鍵字(中) ★ 發光二極管
★ 效率下降
關鍵字(英) ★ LEDs
★ Light emitting diodes
★ Efficiency droopo
★ Phase space filling effect
★ Numerical simulation
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
Contents v
LIST OF FIGURES vii
LIST OF TABLES x
List of Symbols xi
Chapter 1 Introduction 1
1.1 General Background 1
1.2 Motivation and Objectives 2
1.3 Outline of this dissertation 4
Chapter 2 Efficiency droop of LEDs 6
2.1 What is efficiency droop 6
2.2 Mechanisms of efficiency droop 6
2.2.1 pn-junction 9
2.2.2 Current transport in LEDs 10
2.2.3 Recombination in LEDs 12
2.2.4 LED efficiency 15
2.3 Semiconductor physics 17
2.3.1 Density of state (DOS) 17
2.3.2 Carrier distribution 18
2.4 Semiconductor Basic Theory 20
2.4.1 Doping Impurity 20
2.4.2 Metal and Semiconductor Contact 23
2.4.3 Carrier Mobility 25
2.4.4 Solving procedure 26
2.4.4.2 Physics LEDs model 27
2.4.4.3 Numerical method 30
Chapter 3 Influence of the PSF effect on the efficiency droop 53
3.1 Introduction 53
3.2 Results 56
3.3 Summary 69
Chapter 4 Improve efficiency and droop effect of the blue LED 89
4.1 Introduction 90
4.2 Results and discussion 92
4.3 Summary 103
Chapter 5 Conclusion 121
References 124
Publication list 131
參考文獻 1. E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).
2. B. Van Zeghbroeck, "Principles of semiconductor devices," Colarado University 34(2004).
3. F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering 2014(2014).
4. J. Piprek, "Efficiency droop in nitride‐based light‐emitting diodes," physica status solidi (a) 207, 2217-2225 (2010).
5. J. Pankove, E. Miller, and J. Berkeyheiser, "GaN blue light-emitting diodes," Journal of Luminescence 5, 84-86 (1972).
6. L. R. Elias, "High-power, cw, efficient, tunable (uv through ir) free-electron laser using low-energy electron beams," Physical Review Letters 42, 977 (1979).
7. J. Murota, N. Nakamura, M. Kato, N. Mikoshiba, and T. Ohmi, "Low‐temperature silicon selective deposition and epitaxy on silicon using the thermal decomposition of silane under ultraclean environment," Applied physics letters 54, 1007-1009 (1989).
8. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, "A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE," Journal of crystal growth 221, 334-337 (2000).
9. Q. Dai, M. F. Schubert, M.-H. Kim, J. K. Kim, E. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, and G. Thaler, "Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities," Applied Physics Letters 94, 111109 (2009).
10. J.-R. Chen, C.-H. Lee, T.-S. Ko, Y.-A. Chang, T.-C. Lu, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, "Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers," Journal of Lightwave Technology 26, 329-337 (2008).
11. S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, "Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN lightemitting
diodes," Optics Express 25, 2178-2186 (2017).
12. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Applied Physics Letters 91, 183507 (2007).
13. T. Wei, L. Zhang, X. Ji, J. Wang, Z. Huo, B. Sun, Q. Hu, X. Wei, R. Duan, and L. Zhao, "Investigation of efficiency and droop behavior comparison for InGaN/GaN super wide-well light emitting diodes grown on different substrates," IEEE Photonics Journal 6, 1-10 (2014).
14. Y. Shen, G. Mueller, S. Watanabe, N. Gardner, A. Munkholm, and M. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters 91, 1101 (2007).
15. H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Applied Physics Letters 100, 131109 (2012).
16. J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Applied Physics Letters 87, 201112 (2005).
17. B. Monemar and B. Sernelius, "Defect related issues in the “current roll-off” in InGaN based light emitting diodes," Applied Physics Letters 91, 181103 (2007).
18. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi, M. Terazima, and T. Mukai, "Confocal microphotoluminescence of InGaN-based light-emitting diodes," Journal of applied physics 98, 064503 (2005).
19. F. Römer and B. Witzigmann, "Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs," Optics express 22, A1440-A1452 (2014).
20. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Applied Physics Letters 98, 161107 (2011).
21. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, "Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn) N quantum wells by visualization of hot carriers in photoluminescence," Applied Physics Letters 103, 071108 (2013).
22. J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Applied Physics Letters 93(2008).
23. J. Liu, J.-H. Ryou, R. Dupuis, J. Han, G. Shen, and H. Wang, "Barrier effect on hole transport and carrier distribution in In Ga N∕ Ga N multiple quantum well visible light-emitting diodes," Applied Physics Letters 93, 021102 (2008).
24. D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. Fred Schubert, H. Shim, M.-H. Kim, and C. Sone, "Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes," Applied Physics Letters 99, 251115 (2011).
25. C.-K. Li and Y.-R. Wu, "Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs," IEEE Transactions on Electron Devices 59, 400-407 (2012).
26. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, T. Paskova, and G. Mulholland, "InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes," Applied Physics Letters 97, 031110 (2010).
27. N. Bochkareva, V. Voronenkov, R. Gorbunov, A. Zubrilov, Y. S. Lelikov, P. Latyshev, Y. Rebane, A. Tsyuk, and Y. Shreter, "Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes," Applied Physics Letters 96, 133502 (2010).
28. D.-S. Shin, D.-P. Han, J.-Y. Oh, and J.-I. Shim, "Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence," Applied Physics Letters 100, 153506 (2012).
29. A. David and M. J. Grundmann, "Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis," Applied Physics Letters 96, 103504 (2010).
30. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, and J. Hader, "On the origin of IQE‐‘droop’in InGaN LEDs," physica status solidi (c) 6, S913-S916 (2009).
31. M. Deppner, F. Römer, and B. Witzigmann, "Auger carrier leakage in III‐nitride quantum‐well light emitting diodes," physica status solidi (RRL)-Rapid Research Letters 6, 418-420 (2012).
32. K. Chik, "A theoretical analysis of Auger recombination induced energetic carrier leakage in GaInAsP/InP double heterojunction lasers and light emitting diodes," Journal of applied physics 63, 4688-4698 (1988).
33. A. C. Espenlaub, A. I. Alhassan, S. Nakamura, C. Weisbuch, and J. S. Speck, "Auger-generated hot carrier current in photo-excited forward biased single quantum well blue light emitting diodes," Applied Physics Letters 112, 141106 (2018).
34. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, and B. Hahn, "Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates," Applied Physics Letters 101, 131111 (2012).
35. B. Hahn, B. Galler, and K. Engl, "Development of high-efficiency and high-power vertical light emitting diodes," Japanese Journal of Applied Physics 53, 100208 (2014).
36. D. Deppe, "Epitaxial mode-confined vertical cavity surface emitting laser (VCSEL) and method of manufacturing same," (Google Patents, 2005).
37. H. Fu, Z. Lu, and Y. Zhao, "Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect," AIP Advances 6, 065013 (2016).
38. A. David and M. J. Grundmann, "Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes," Applied Physics Letters 97, 033501 (2010).
39. P. Tian, J. J. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Applied Physics Letters 105, 171107 (2014).
40. D.-P. Han, J.-I. Shim, and D.-S. Shin, "Analysis of carrier recombination dynamics in InGaN-based light-emitting diodes by differential carrier lifetime measurement," Applied Physics Express 10, 052101 (2017).
41. C. Sheng Xia, Z. Simon Li, and Y. Sheng, "On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes," Applied Physics Letters 103, 233505 (2013).
42. J. Piprek and S. Li, "Electron leakage effects on GaN-based light-emitting diodes," Optical and Quantum Electronics 42, 89-95 (2010).
43. V. Fiorentini, F. Bernardini, and O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Applied Physics Letters 80, 1204-1206 (2002).
44. D. J. Griffiths, "Introduction to electrodynamics," (AAPT, 2005).
45. W. Zimmerman, "Experimental verification of the Shockley--Read--Hall recombination theory in silicon," Electronics Letters 9, 378-379 (1973).
46. T. Langer, A. Chernikov, D. Kalincev, M. Gerhard, H. Bremers, U. Rossow, M. Koch, and A. Hangleiter, "Room temperature excitonic recombination in GaInN/GaN quantum wells," Applied Physics Letters 103, 202106 (2013).
47. W. Shockley and W. Read Jr, "Statistics of the recombinations of holes and electrons," Physical review 87, 835 (1952).
48. R. N. Hall, "Electron-hole recombination in germanium," Physical review 87, 387 (1952).
49. L. Wang, C. Lu, J. Lu, L. Liu, N. Liu, Y. Chen, Y. Zhang, E. Gu, and X. Hu, "Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes," Optics express 19, 14182-14187 (2011).
50. E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, "Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices," New Journal of Physics 15, 125006 (2013).
51. E. Gaubas and J. Vanhellemont, "Comparative study of carrier lifetime dependence on dopant concentration in silicon and germanium," Journal of The Electrochemical Society 154, H231-H238 (2007).
52. S. Rein, "Lifetime spectroscopy: a method of defect characterization in silicon for photovoltaic applications. 2005," Berlin: Springer 489, 188.
53. J. Yang, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, X. Li, X. He, J. Liu, and L. Zhang, "Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes," Optics Express 24, 13824-13831 (2016).
54. Y. Shen, G. Mueller, S. Watanabe, N. Gardner, A. Munkholm, and M. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters 91, 141101 (2007).
55. X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, "Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis," Applied Physics Letters 108, 013501 (2016).
56. S. Selberherr, Analysis and simulation of semiconductor devices (Springer Science & Business Media, 2012).
57. W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, "Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells," Physical Review B 94, 195411 (2016).
58. B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, and H.-C. Kuo, "Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer," Optics express 22, 463-469 (2014).
59. C. K. Sun, S. Keller, G. Wang, M. Minsky, J. Bowers, and S. DenBaars, "Radiative recombination lifetime measurements of InGaN single quantum well," Applied physics letters 69, 1936-1938 (1996).
60. D. A. Neamen, Semiconductor physics and devices: basic principles (New York, NY: McGraw-Hill, 2012).
61. K. C. Kao, Dielectric phenomena in solids (Elsevier, 2004).
62. J. Hader, J. Moloney, and S. Koch, "Beyond the ABC: Carrier recombinations in semiconductor lasers," in Proc. SPIE, 2006), 61151T.
63. R. Ahrenkiel, S. Ahrenkiel, D. Arent, and J. Olson, "Carrier transport in ordered and disordered In 0.53 Ga 0.47 AS," Applied physics letters 70, 756-758 (1997).
64. H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, "A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates," Scientific Reports 7(2017).
65. O. Heikkilä, J. Oksanen, and J. Tulkki, "Ultimate limit and temperature dependency of light-emitting diode efficiency," Journal of Applied Physics 105, 093119 (2009).
66. A. Walker, S. Heckelmann, C. Karcher, O. Höhn, C. Went, M. Niemeyer, A. Bett, and D. Lackner, "Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures," Journal of Applied Physics 119, 155702 (2016).
67. Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, "Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes," Applied Physics Letters 97, 133507 (2010).
68. B. Cao, S. Li, R. Hu, S. Zhou, Y. Sun, Z. Gan, and S. Liu, "Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes," Optics express 21, 25381-25388 (2013).
69. A. Zinovchuk, O. Y. Malyutenko, V. Malyutenko, A. Podoltsev, and A. Vilisov, "The effect of current crowding on the heat and light pattern in high-power AlGaAs light emitting diodes," Journal of Applied Physics 104, 033115 (2008).
70. B. Laikhtman, A. Gourevitch, D. Donetsky, D. Westerfeld, and G. Belenky, "Current spread and overheating of high power laser bars," Journal of applied physics 95, 3880-3889 (2004).
71. L. Zhang, X. Wei, N. Liu, H. Lu, J. Zeng, J. Wang, Y. Zeng, and J. Li, "Improvement of efficiency of GaN-based polarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition," Applied Physics Letters 98, 241111 (2011).
72. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Applied Physics Letters 96, 221105 (2010).
73. Y.-Y. Zhang, X.-L. Zhu, Y.-A. Yin, and J. Ma, "Performance enhancement of near-UV light-emitting diodes with an InAlN/GaN superlattice electron-blocking layer," IEEE Electron Device Letters 33, 994-996 (2012).
74. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. Lee, D. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Applied Physics Letters 94, 231123 (2009).
75. K.-H. Kim, S.-W. Lee, S.-N. Lee, and J. Kim, "Effect of p-AlxGa1− xN electron blocking layer on optical and electrical properties in GaN-based light emitting diodes," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30, 061204 (2012).
76. L. Zhang, K. Ding, N. Liu, T. Wei, X. Ji, P. Ma, J. Yan, J. Wang, Y. Zeng, and J. Li, "Theoretical study of polarization-doped GaN-based light-emitting diodes," Applied Physics Letters 98, 101110 (2011).
77. S. Tu, J. Chen, F. Hwu, G. Sheu, F. Lin, S. Kuo, J. Chang, and C. Lee, "Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED," Solid-State Electronics 54, 1438-1443 (2010).
78. J. Hader, J. Moloney, B. Pasenow, S. Koch, M. Sabathil, N. Linder, and S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Applied Physics Letters 92, 261103 (2008).
79. C. Wang, C. Ke, C. Lee, S. Chang, W. Chang, J. Li, Z. Li, H. Yang, H. Kuo, and T. Lu, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Applied Physics Letters 97, 261103 (2010).
80. R. M. Perks, A. Porch, D. V. Morgan, and J. Kettle, "Theoretical and experimental analysis of current spreading in AlGaInP light emitting diodes," Journal of applied physics 100, 083109 (2006).
指導教授 陳志臣(Chen-Jyh Chen) 審核日期 2020-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明