博碩士論文 90322062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.144.100.252
姓名 葉宗泰(Tsung-Tai Yeh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 石門水庫集水區降雨逕流模擬
(Simulation on the Rainfall-Runoff Process in Shihmen Watershed)
相關論文
★ 水資源供需指標建立之研究★ 救旱措施對水資源供需之影響分析
★ 台灣地區颱風雨降雨型態之分析研究★ 滯洪池系統最佳化之研究
★ 運用遺傳演算優化串聯水庫系統聯合運轉規線之研究★ 河川魚類棲地分佈之推估與分析研究-以卑南溪新武呂河段為例-
★ 整合型區域水庫與攔河堰聯合運轉系統模擬解析及優化之研究★ 河川低水流量分流演算推估魚類棲地之研究-以烏溪上游為例
★ 大漢溪中游生態基流量推估與棲地改善之研究★ 石門水庫水質模擬與水理探討
★ 越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例★ 防洪疏散門最佳啟閉時間之研究 -以基隆河臺北市河段為例-
★ 配水管網破管與供水穩定性關係之研究★ 石門水庫永續指標之建立與研究
★ 台灣地區重要水庫集水區永續指標建立與評量★ 限制開發行為對水庫集水區水質保護之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要建立水庫集水區降雨逕流模式,模式中將二維逕流模式及一維河川模式結合,針對颱洪降雨事件進行集水區水文。模式以水文方程式為連續方程式,曼寧公式為動量方程式,輔以數值地形模型(Digital Terrain Model,DTM)之數值高程為基本資料建構分散式(Distributed-parameter)數值模式,以應用於水庫集水區。
以石門水庫集水區為研究範圍,分別考慮不同DTM解析度、演算時距大小、不同河道斷面修正方式及空間降雨估計方式進行模擬檢定。結果顯示模式於網格間距160公尺、演算時距10秒以下、平均坡度設定之河道斷面高程及徐昇氏多邊形法所得之降雨資料於模式中有較佳之模擬結果。
摘要(英) This study combined one-dimensional river model and two-dimensional runoff model to simulate surface runoff and channel flow of a reservoir watershed during typhoons. The continuity equations of both runoff and river modules were described by the distributed water-budget. The momentum transfer of water was estimated by the Manning’s equations.
The Shihmen reservoir was selected as the domain of interest. Different spatial resolutions, time step sizes, channel bottom gradients and cross-sections, spatial rainfall distributions were considered for simulations. Results of the current model showed a DEM resolution of 160 m, a time step size of less than 10 second, and average-slope approach of channel bottom gradient, and Thiessen polygons approximation of rainfall can provide a better solution for the Shiehmen watershed.
關鍵字(中) ★ 降雨逕流模式
★ 石門水庫
關鍵字(英) ★ Shihmen Reservoir
★ precipitation-runoff model
論文目次 中文摘要……………………………………………………………. Ⅰ
英文摘要……………………………………………………………. Ⅱ
目錄…………………………………………………………………. Ⅲ
表目錄………………………………………………………………. Ⅵ
圖目錄………………………………………………………………. Ⅶ
符號表………………………………………………………………. Ⅸ
第一章 緒論
1.1 前言…………………………………………………….. 1
1.2 研究目的與方法……………………………………….. 2
1.3 本文架構……………………………………………….. 2
第二章 文獻回顧
2.1 流向判定……………………………………………….. 5
2.1.1相關研究…………………………………………… 6
2.2 一維河川模式………………………………………….. 7
2.3 二維漫地流模式……………………………………….. 7
2.3.1相關研究…………………………………………… 7
2.3.2相關模式…………………………………………… 8
第三章 理論分析
3.1 一維河川模式………………………………………….. 11
3.1.1控制方程式………………………………………… 11
3.2 二維漫地流模式……………………………………….. 13
3.2.1 控制方程式………………………………………... 13
3.2.2 計算方法…………………………………………... 14
3.2.3 初始及邊界條件…………..……………………… 15
3.3二維漫地流與一維河川之結合……………………….. 15
3.3.1 一、二維交界處之計算…………………………... 16
3.3.2 匯流處之計算……………………………………... 16
3.3.3 模式銜接…………...…….……………….……….. 17
第四章 模式於石門水庫之應用
4.1 研究區域基本資料…………………………………….. 23
4.1.1 DTM數值地形……………………………………. 23
4.1.2 土地利用資料…………………………………….. 24
4.2 庫區界定……………………………………………….. 24
4.3 河川斷面資料………………………………………….. 25
4.4 降雨資料……………………………………………….. 26
第五章 模式之檢定與驗證
5.1 檢定庫容水位曲線……………………….…………… 46
5.2 檢定河道斷面資料……………………….……………. 47
5.2.1檢定河川斷面高程之設定方式…………………… 47
5.2.2河川斷面高程之曼寧粗糙係數…………………… 48
5.3 檢定最適解析度………………………….……………. 48
5.3.1最適之解析度……………………………………… 48
5.3.2最適之地表曼寧粗糙係數…………………………. 49
5.4 檢定最適演算時距……………………….……………. 49
5.5 檢定最適降雨資料……………………….……………. 50
5.6模式驗證………………………………………………... 51
第六章 結論與建議
6.1 結論…………………………………………………….. 62
6.2 建議…………………………………………………….. 63
參考文獻……………………………………………………………. 64
參考文獻 1. 王如意、易任,國立編譯館,臺北,第323頁 (1988)。
2. 王如意、李戎威,「空間分布地表逕流多層核胞模之研究及其應用」,農委會78農建-7.1-林-21(5)研究計畫報告,臺北(1989)。
3. 王如意、李如晃,「以修正型水筒模式研析颱洪事件之研究」,第八屆水利工程研討會論文集,臺灣大學,第71-78頁(1996)。
4. 余岱璟,「石門水庫水質模擬與水理探討」,碩士論文,國立中央大學,桃園(2002)。
5. 吳啟瑞,「八掌溪流域之淹水模擬」,碩士論文,國立台灣大學農業工程研究所,臺北 (1993)。
6. 吳東雄,「石門水庫永續指標之建立與研究」,碩士論文,國立中央大學土木工程研究所,桃園(2002)。
7. 陳清目,「向量與網格式數值地形模型在集水面積演算之比較研究」,碩士論文,國立台灣大學地理學研究所,臺北 (1996)。
8. 許明熙、鄧慰先、黃成甲,「八掌溪流域洪水及淹水預報模式之研究(二)」,行政院國科會報告,臺北(1996)。
9. 黃文亮、蔡長泰、張玉田,「平面二維性水流之數值模擬」,第二屆水利工程研討會論文集,臺北,第171-186頁 (1984)。
10. 黃巧雲,「台灣地區重要水庫集水區永續指標建立與評量」,碩士論文,國立中央大學土木工程研究所,桃園(2002)。
11. 楊政潭,「應用雷達回波資料於降雨空間分佈及總量之研究-以納莉颱風為例」,碩士論文,國立中央大學水文科學研究所,桃園(2003)。
12. 經濟部水利署北區水資源局網站(www.wranb.gov.tw),(2003)。
13. 簡名毅,「鹽水溪流域洪水與淹水演算模式」,碩士論文,國立台灣大學農業工程研究所,臺北(1999)。
14. 盧重任,「台北縣板橋地區洪水及淹水演算模擬」,碩士論文,國立台灣大學農業工程研究所,臺北 (1998)。
15. 顏清連,「防洪科技之研發與落實」,第九屆水利工程研討會論文集,中央大學,第21-30頁(1998)。
16. Akan, AO. Yen, BC., “Diffusive-wave flood routing in channel networks,” Journal of the Hydraulics Division, ASCE, Vol. 107, No. HY6, pp.719-731 (1981).
17. Aknbi, A. A., and Katopodes, N. D., “Model for Flood Propagation on Intially Dry Land,” Journal of Hydraulic Engineering, ASCE, Vol. 114, pp. 689-705 (1988).
18. Balloffet, A., and Scheffler, M. L., “Numerical Analysis of the Teton Dam Failure Flood,” Journal of Hydraulic Research, Vol. 20, pp. 317-428 (1982).
19. Band, L. E., “Topographic partition of watersheds with digital elevation models,” Water Resources Research, Vol. 22, No. 1, pp. 15-24 (1986).
20. Bolstad, P. V., and Stowe, T., “An evaluation of DEM accuracy: elevation, slope and aspect,” Photogrammetric Engineering & Remote Sensing, Vol. 60, No. 11, pp. 1327-1332 (1994).
21. Boyd. M.J., “A Storage Routing Model Relating Drainage Basin Hydrology and Geomorphology,” Water Resources Research, Vol. 14, No. 5, pp. 921-928 (1978).
22. Boyd, M. J., D. H. Pilgrim, and I. Cordery, “A Storage Routing Model Relating on Catchment Geomorphology,” Journal of Hydrology, Vol. 42, No. 3, pp. 209-230 (1979).
23. Costa-Cabral, M. C., and Burges, S., “Digital elevation model networks(DEMON): A model of flow over hillslopes for computation of contributed and dispersal areas,” Water Resources Research, Vol. 30, No. 6, pp.1681-1692 (1994).
24. David, M. W., and Gregory J. M. Jr., “Comparison of single and multiple flow direction algorithm for computing topographic parameter in TOPMODEL,” Water Resources Research, Vol. 31m No. 5, pp. 1315-1324 (1995).
25. Diskin, M. H. and G. G. S. Pegram, “A Study of Cell Models, 3. A Pilot Study on the Calibration of Manifold Cell Models in the Time Domain and in the Laplace Domain,” Water Resources Research, Vol. 23, No. 4, pp. 663-673 (1987).
26. Diskym, M. H., G. Wyseure, and J. Feyen, “A Quasi Linear Spatially Distbuted Cell Model for the Surface Runoff System,” Water Resources Bull., Vol. 14, No. 4, pp.903-918 (1978).
27. Fairfield, J., and Leymarie, P., ”Drainage networks from grid digital elevation models,” Water Resources Research, Vol. 27, No. 5, pp. 709-717 (1991).
28. Fennema, R. J., and Chaudhry, M. H., “Explicit numerical schemes for unsteady free-surface flows with shocks,” Water Resources Research, Vol. 22, No. 13, pp. 1923-1930 (1986).
29. Fennema, RJ., Chaudhry, MH., “Implicit methods for two-dimesional unsteady free-surface flows,” Journal of the Hydraulic Research, Vol.27, pp. 321-332 (1989).
30. Fread, D. L., “Discussion of ‘Implicit flood routing in natural channels.’ By M. Amein and C. S. Fang.,” Journal of Hydraulic Engineering, ASCE, Vol. 97, No. 7, pp. 1156-1159 (1971).
31. Freeman, T. G., “Calculating catchment areas with divergent flow based on a regular grid,” Computers and Geosciences, Vol. 17, No.3, pp. 413-422 (1991).
32. Gao, J., “Resolution and accuracy of terrain representation by grid DEMs at a micro-scale,” International Journal Geographic Information Science, Vol. 11, No. 2, pp. 204-213 (1997).
33. Garbrecht, J., and Martz, L. W., “The assignment of drainage direction over flat surfaces in raster digital elevation models,” Journal of Hydrology, Vol. 193, pp. 204-213(1997).
34. Garcia, R., and Kahawata, R. A., “Numerical Solution of the St. Venant Equations with the MacCormack Finite-Differecce Scheme,” International Journal for Numerical Method in Fluids, Vol. 6, pp. 259-274 (1986).
35. Gustafsson, B., “An Alternating Direction Implicit Method for Solving the Shallow Water Equations,” Journal of the Computational Physics, No. 7, pp. 239-254 (1971).
36. Holmgren, P., “Multiple flow direction algorithms for runoff modeling inf grid based elevation models: an empirical evaluation,” Hydrological Processes, Vol. 8, pp. 327-334 (1994).
37. Hsu, M. L., “A grid-based model for predicting dynamic soil pore pressure,” Journal of Geographical Science, Vol. 18, pp. 1-21 (1995).
38. Ijjasz-Vasquez, E. J., and Bras, R. L., ”Scaling regimes of local slope versus contributing area inf digital elevation models,” Geomorphology, Vol. 12, pp. 299-311 (1995).
39. Jenson, S. K., and Domingue, J. O., “Extracting topographic structure from digital elevation model data for geographic information system analysis,” Photogrammetric Engineering and Remote Sensing, Vol. 54, pp.1593-1600 (1988).
40. Jenson, S. K., “Applications of hydrological information automatically extracted from digital elevation models,” Hydrological Processes, Vol. 5, pp. 31-44 (1991).
41. Katopodes, N. D., and Strelkoff, T., “Computing Two Dimension Dam-Break Flow Wave,” Journal of the Hydraulic Division, ASCE, Vol. 104, pp. 1269-1288 (1978).
42. Laurenson, E. M., “A Catchment Storage Model for Runoff Routing,” Journal of Hydrology, Vol. 2, No. 2, pp. 141-163 (1964).
43. Martz, L. W., and Garbrecht, J., “numerical definition of drainage network and subcatchment areas from digital elevation models,” Computers and Geosciences, Vol. 18, No. 6, pp. 747-761 (1992).
44. Martz, L. W., and Garbrecht, J., “Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method,” Journal of Hydrology, Vol. 167, No. 4, pp.393-396 (1995).
45. Martz, L. W., and Garbrecht, J., “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models,” Hydrological Processes, Vol. 12, pp.843-855 (1998).
46. Mein, R. G., E. M. Laurenson, and T. A. MacMahon, “Simple Nonlinear Method for Flood Estimation,” Journal of Hydrology, Div. ASCE, Vol. 100, No. HY11, pp. 1507-1511 (1974).
47. Mendumi, G., and Riboni, V., “A physically based catchment partitioning method for hydrological analysis,” Hydrological Processes, Vol. 14, pp. 1943-1962 (2000).
48. O’Callaghan, J. G., and Mark, D. M., “The extraction of drainage networks from digital elevation data,” Computer Vision, Graphic and Image Processing, Vol. 28, pp. 323-344 (1984).
49. Pegram, G. G. S. and M. H. Diskin, “ A Study of Cell Models, 1. A Manifold Cell Model for Distributed Surface Runoff Systems,” Water Resources Research, Vol. 23, No. 4, pp. 646-654 (1987).
50. Pegram, G. G. S. and M. H. Diskin, “ A Study of Cell Models, 2. The Effect of Time Delay on the Limiting Forms OF Cascade and Manifold Cell Model Response Functions,” Water Resources Research, Vol. 23, No. 4, pp. 655-622 (1987).
51. Quinn, JP. F., Beven, K. J., Chevallier, P., and Planchon, O., “The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain model,” Hydrological Processes, Vol. 5, pp. 59-79 (1991).
52. Rahman, M., and Chaudhry, MH., “Computation of flow in open-channel transitions,” Journal of Hydraulic Research, Vol. 35, pp. 243-256 (1997).
53. Rieger, W., “A phenomenon-based approach to upslope contributing area and depressions in DEMs,” Hydrological Processes, Vol. 12, pp. 857-872 (1998).
54. Tribe, A., “Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method,” Journal of Hydrology, Vol. 139, No. 3, pp. 263-293 (1992).
55. Xanthopoulos, TH., and Koutitas, CH., “Numerical Simulation of Two-Dimensional Flood Wave Propagation due to Dam Failure,” Journal of Hydraulic Research, Vol. 14, pp. 321-331 (1976).
56. Zhang, W., Cundy, TW., “Modeling of two-dimensional overland flow,” Water Resources Research, Vol. 25, No. 9, pp. 2019-2035 (1989).
指導教授 吳瑞賢(Ray-Shyan Wu) 審核日期 2003-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明