台灣聯合大學系統 109 學年度學士班轉學生考試試題

科目_工程數學______類組別___A5____

共/頁第/頁

1. Find the solutions for the following ordinary differential equations (ODEs):

(a)
$$y' + xy = xy^{-1}$$
, $y(0) = 3$. (5%)

(b)
$$x^2y'' - 3xy' + 3y = 3\ln x - 4$$
, $y(1) = 0$, $y'(0) = 1$ (5%)

2. Solve the following initial value problem using the method of Laplace Transformation:

$$y'' - y = t, y(0) = 1, y'(0) = 1$$
 (8%)

3. Referring to the following figure, find the equation that can describes (models) the motion of the mass as a function of time, y(t), and solve the modeling equation if the initial position and velocity of the mass are both zeros, i.e., y(0) = 0 and y'(0) = 0.

4. Find the eigenvalues and eigenvectors

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

5. Solve the following problems (Each 5%)

(15%)

- If a curve can be described using parametric representation as (a) $\vec{\mathbf{r}}(t) = [a\cos^3 t, a\sin^3 t]$, find the arc length, s, if the parameter goes from t = 0 to $t = \pi/2$.
- (b) Find a unit normal vector of the surface $16x^2 y^2 = 399$ at the point P: $\left(\frac{1}{8},1\right)$.
- (c) Find the directional derivative of $f = x^2 + y^2 + z^2$ at P: P:(2,2,-1) in the direction $\vec{a} = [1,1,3]$.
- 6. A is a $n \times n$ matrix, \vec{e}_p is a unit vector of size $n \times 1$ with its non-zero at the pth row. Let $A\vec{x} = \vec{e}_1$, $A\vec{y} = \vec{e}_n$, and $A\vec{z} = 2\vec{e}_1 + 3\vec{e}_n$. Find the solutions \vec{z} in terms of \vec{x} and \vec{y} . (10%)
- 7. Let S be the surface of a cube with length 1 on each side, centered at [0,0,0]. Let $\vec{u} = [x, y, z]$. Denote \vec{n} as the unit out-normal of S. Calculate $\int_{S} \vec{u} \cdot \vec{n} dA$ using divergence theorem. (10%)
- 8. Solve the PDE u(x,t): $u_{tt} = u_{xx}$, $0 \le x \le 1$, $t \ge 0$ with BCs: u(0,t) = u(1,t) = 0, and ICs: $u(x,0) = \sin(\pi x) + 3\sin(3\pi x)$, $u_t(x,0) = 0$. (15%)
- 9. Solve the PDE u(x,t): $u_t = u_{xx} u, 0 \le x \le 1, t \ge 0$ with BCs: u(0,t) = u(1,t) = 0, and IC: $u(x,0) = \sin(\pi x)$. (15%)