類組: 電機類 科目: 控制系統(300D)

共_2 頁第 1 頁

- 1. (28%) Consider the two-mass system in Figure 1, where k_1 and k_2 are spring constants; x_1 and x_2 are displacements of m_1 and m_2 , assuming that both springs have their natural lengths when $x_1 = x_2 = 0$. The surface is frictionless and f is an external force applied to m_1 .
 - (a) (6%) Choose x_1 as the output of the system. Write down the state space representation using $\mathbf{x} = [x_1, x_2, \dot{x}_1, \dot{x}_2]^T$ as the state vector, where \dot{x}_i denotes the time derivative of x_i for i = 1, 2.
 - (b) (8%) Find the transfer function from f to x_1 .
 - (c) (6%) Suppose that $\frac{k_1}{m_1} = \frac{k_2}{m_2} = r$ and $\frac{k_2}{m_1} = \frac{r}{6}$. Find the resonant frequencies of the system in terms of r.
 - (d) (8%) Let $f(t) = \sin(\omega_0 t)$ and $\dot{x}_1(0) = 0$. Find ω_0 , $x_2(0)$, and $\dot{x}_2(0)$ such that $x_1(t) = 0$ for all $t \ge 0$.

2. (22%) Consider the feedback control system in Figure 2, where

$$G(s) = \frac{10}{(s+1)(s+10)}, \qquad C(s) = \frac{k(as+1)}{s}, \ k, a > 0$$

- (a) (6%) Find the conditions on k and a such that the closed-loop system is stable.
- (b) (8%) Find k and a to satisfy the following requirements simultaneously:
 - i. The closed-loop transfer function from r to y is a stable, 2^{nd} order rational function.
 - ii. The steady-state error with respect to the unit-ramp input r(t) = t, $t \ge 0$, is less than 0.2.
 - iii. The percent maximum overshoot with respect to the unit-step input r(t) = 1, $t \ge 0$, is less than 10%.
- (c) (8%) Let $a = \frac{1}{20}$. Draw the root locus when k increases from 0 to ∞ . If k = 1, what is the gain margin of the system?

Figure 2: Feedback Control System

類組:電機類 科目:控制系統(300D)

共_よ 頁第 よ頁

3. (32%) Consider the following feedback system with plant $G_{p}(s)$ and controller $G_{c}(s)$.

Let
$$G_p(s) = \frac{s^3}{s+2}$$
, where $G_p(j\omega) = \frac{-\omega^4 - 2j\omega^3}{\omega^2 + 4}$. The controller $G_c(s) = K$.

- (a) (6%) Plot the root locus for K>0 and K<0, respectively.
- (b) (5%) Sketch the Nyquist plot for K>0.
- (c) (4%) Analyze the stability from Nyquist plot for all K.
- (d) (6%) To stabilize the system, a control engineer chooses $G_c(s) = \frac{K}{s(s+p)}$, where p>0. Show that the root locus contains a circle for K>0.
- (e) (4%) As in part (d), design the closed-loop poles at $-1 \pm j$, design the controller $G_c(s)$
- (f) (3%) From the root locus in part (d), what are the Gain margin?
- (g) (4%) In part (e) and input $r(t) = 1 + \cos(\sqrt{2}t 30^\circ)$, what is the steady state output?
- 4. (18%) Let the state equations of an LTI system be $\dot{x}(t) = Ax(t) + Bu(t)$, and y(t) = Cx(t) and $x(t) = \phi(t)x(0) + \int_0^t \phi(t-\tau)Bu(\tau)d\tau$, where $\phi(t)$ is the state transition matrix and initial condition is x(0).
 - (a) (3%) What is the impulse response, h(t), of the output without initial condition?
 - (b) (6%) Consider a system ruled by $\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 2\dot{u}(t) + 3u(t)$, find the state space representation of A, B, and C with Controllability Canonical Form.
 - (c) (4%) Without initial condition, what is the impulse response of the output by part (a)? Hint: the Laplace transform of $\phi(t)$ is $[sI-A]^{-1}$. Do NOT compute $\phi(t)$ directly.
 - (d) (5%) Solve the impulse response, h(t), by $\ddot{h}(t) + 3\dot{h}(t) + 2h(t) = 2\dot{\delta}(t) + 3\delta(t)$ with differential equation approach. What is your observation with the result in part (c)?