EEBEAZL24 1025 BT LE F RS

M Bl A EHSEE02) MEE # 2 B &

1. A string matching algorithm aims to find the occurrence of a string P within another string
S.
(5%) (a) Use pseudo-code or C code to describe a string matching algorithm that has time
complexity of O(Np*Ns), where Np and N are the lengths of P and S, respectively.

(5%) (b) The Knuch-Morris-Pratt (KMP) algorithm is a string matching algorithm designed
to reduce redundant symbol comparisons in string matching. What is the big-O time
complexity, in terms of Np and N, of the KMP algorithm?

2. (10%) The C structures of a singly linked list and its list items are given below:
struct IntlListItem /{
int wvalue;
struct IntListItem * link;
i
struct IntList {
struct IntListItem *front;
b
Give the C implementation of a function
void smallest to front (IntList *list)
that moves the item with the smallest value to the front of the list, and leave the relative
orders of the other list items unchanged.

3. (10%) Given a non-empty queue Q and a stack T, use pseudo-code to describe an algorithm
to reverse the order of the elements in Q using T. For both Q and T, you can only use their
push and pop operations.

4. The available-space lists for linked lists are used to "recycle" unused list items instead of
releasing their memory.
(3%) (a) Describe the advantage of using available-space lists.

(3%) (b) Describe in pseudo-code of how to implement the function clear, which should
run in O(1) time complexity. This function clears the content of a list so that its size becomes
Zero.

(4%) (c) Describe in pseudo-code of how to implement the function add_space (N),
where N is a positive integer. This function adds N items to the available-space list. It should
use memory allocation call only once.

5. A typical maze problem, where the goal is to find a path between two cells in a maze, is
often solved with a stack. Answer the following questions:
(3%) (a) What is the purpose of using a stack?

(3%) (b) If using a stack, what information should be pushed onto the stack when moving
to a new cell?

(4%) (c) Can you use recursion to solve the same problem? Explain.

6. (10%) Briefly describe “binary search” and “searching on a binary search tree”, and make
a comparison between them in terms of data structure constraints and time complexity.

7. (10%) Explain why a heap is always implemented in an array rather than linked list.

| &

EECH @A RA




EEBMEARLZ LG 110 R FERIER L A

fawm EAEE e EREHEG002) # 2 A% L §F

8. (5%) (a) Propose two graph storage structures for the graph in Figure 1 and explain the pros
and cons for those two structures.

(5%) (b) Develop a minimal spanning tree of the graph. |

Figure 1. Graph with weights.

9. (10%) The binary search tree in Figure 2 was created by starting with a null tree and entering
- data from the keyboard. In what sequence were the data entered? If there is more than one
possible sequence, identify the alternatives.

Figure 2. Binary search tree.

10. (10%) The shell sort algorithm is an improved version of the straight insertion sort. In the

shell sort, a list of N elements is divided into K segments, where K is known as the

- increment. For example, in Figure 3, K is 3. The first, fourth, seventh, and tenth elements

" make up segment 1. For each pass, the data in each segment are sorted in Insertion Sort.

Thus, after insertion sort, there are three different ordered lists. A fter each pass through

the data, the increment is divided by two (K/2) until, in the final pass, it is 1. Please prove
(explain) the time complexity of Shell sort is close to O(N log N).

A0l AND AL AR A AB] AB] APl Al A9l

Segment 1 IA—{_I—__{}]| Alo =+ 1 XK] Al + 2x K] A0 +3x K]
1

Segment 2 Al
I;l

Segment 3

All + 13K} Al + 2% K]

AR A2+ 1xK] A2 +2x K}

Figure 3. Segments in Shell sort.




