博碩士論文 108621009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.239.239.71
姓名 蔡雨虔(Yu-Cian Tsai)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ MJO對南海颱風活動之影響
★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?★ Changes of the Hadley Cell During the Last Four Decades
★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation★ Changes of Tropical Tropopause in Response to Global Warming
★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究
★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study
★ The role of shallow convection in tropical circulation: a simple analytic approach★ Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討Madden-Julian Oscillation(MJO)在暖池地區(15°N -15°S, 60-180°E)上的不同傳播行為,並且著重在北半球冬季(11月至4月)的印度洋(IO)和海洋大陸 (MC)區域。透過使用ERA-Interim再分析資料和高解析度大氣模式(HiRAM)產出的850百帕緯向風(u850)、200百帕緯向風(u200)、外逸長波輻射(OLR)場,配合多重經驗正交函數(EOF)分析的主分量1(PC1)和主分量2(PC2)時間序列將 MJO 事件分類為向東衰減(ED)和向東傳播(EP)類型,後者能進一步分為強傳播(SP)和弱傳播(WP)兩種類型。
本研究主要內容分為兩大章,第一章研究利用再分析資料檢驗MJO東傳和維持的物理機制。與 ED MJO事件相比,EP MJO事件產生了更強的深對流以及顯著的第二斜壓模結構,特別是在海洋大陸的發展階段。此外,在較強的初始對流之後伴隨著較慢的MJO相速度特徵。濕靜能(MSE)收支分析表明水平平流的經向分量對促進MJO傳播至關重要。大氣淨輻射和表面熱通量在提供能量以維持MJO對流方面也起著關鍵作用。另一方面,標轉化的粗濕穩定度(NGMS)平面分析呈現各種MJO事件中的充電–放電和濕化–乾化(RDMD)過程。
第二章研究透過水平解析度約25公里的HiRAM 模式探討全球暖化下EP和ED MJO事件的變化。在RCP8.5全球變暖情景下,MJO有更快的傳播相速與更短的週期為特徵。此外,在 HiRAM 預測(2076-2100)中,EP MJO事件的數量略有減少,而ED MJO事件的數量顯著增加,這意味著在暖化下,全球MJO的活動正在減少。垂直速度的空間剖面隨時間變化進一步表明,IO區域中的MJO對流結構將會隨著暖化而加深,特別是在EP MJO事件中。隨著臨界NGMS的下降,RDMD過程變得更加激烈,這說明需要更多的能量輸入才能在全球暖化下產生相同強度的對流。
摘要(英) This study investigates the distinct behaviors of Madden-Julian Oscillation (MJO) propagation over the warm pool region (15°N -15°S, 60-180°E), focusing on the Indian Ocean (IO) and Maritime Continent (MC) during the boreal winter (November – April). The multivariate EOF PC1 and PC2 time series of u850, u200, OLR fields from ERA-Interim reanalysis and High-Resolution Atmospheric Model (HiRAM) data are utilized to categorize MJO events into Eastward Decaying (ED) and Eastward Propagating (EP) types, with the latter further dividing into two subtypes of strong propagating (SP) and weak propagating (WP) events.
Major contents of this study are divided into two Chapters. In Chapter 1, we examine the physical mechanism for MJO eastward propagation and maintenance with reanalysis data. The EP MJO events generate a more robust deep convective structure along with a significant second baroclinic structure, particularly during the developing phase over the Maritime continent compared to the ED MJO events. In addition, a slower MJO phase speed is identified following stronger initial convection. The moist static energy (MSE) budget analysis demonstrates that the horizontal MSE advection′s meridional component is crucial to promoting MJO propagation. Atmospheric net radiation and surface heat fluxes also play a critical role in providing energy to maintain the MJO convection. On the other hand, the Normalized Gross Moist Stability (NGMS) plane analysis nicely pictures the recharging-discharging and moistening-drying (RDMD) processes in all kinds of MJO events.
In Chapter 2, we examine the potential changes of EP and ED MJO events under global warming based on two time-sliced HiRAM simulations with about 25-km horizontal resolution. Faster phase speed is distinguished by shortened MJO period under the RCP8.5 global warming scenario. Furthermore, the number of EP MJO events decreases slightly, whereas the number of ED MJO events increases significantly in the HiRAM projection (2076-2100), implying declining MJO activities around the globe in a warming world. The time-height diagram of omega further suggests that the MJO convection in the IO domain is projected to be deeper under global warming, especially for the EP MJO events. The RDMD processes turn more drastic with a declined critical NGMS, implying that more energy inputs are required to generate the same intensity of convection under global warming.
關鍵字(中) ★ 馬登-朱利安振盪 關鍵字(英) ★ Madden-Julian Oscillation
論文目次 摘要 i
Abstract ii
Table of Contents v
List of Figures vi
List of Tables x
Chapter 1 Distinct Propagating Behaviors of MJO over Indian Ocean and Maritime Continent 1
1.1 Introduction 1
1.2 Data and Methodology 4
1.2.1 Data Sources 4
1.2.2 Classification of MJO types 4
1.2.3 Selection of spatial domain for analysis 6
1.2.4 MSE and moisture budget analysis 6
1.2.5 NGMS plane analysis 7
1.3 Results: Characteristics of the SP, WP, and ED events 9
1.3.1 Composite eight-phases diagram and Hovmöller diagram 9
1.3.2 Temporal evolution and zonal/vertical structure 11
1.3.3 Column-integrated moisture and MSE budget analysis 13
1.3.4 Behavior of NGMS plane on MJO event 15
1.4 Concluding Remarks 18
References 21
Chapter 2 Changes of MJO Variability under Global Warming in the HiRAM Simulations 43
2.1 Introduction 43
2.2 Model and Time Slice Experimental Design 46
2.3 Results 47
2.3.1 Overview of MJO propagation in ERA-Interim and HiRAM model 47
2.3.2 Characteristic of EP and ED events in HiRAM model 49
2.3.3 Behavior of NGMS plane with EP and ED events under global warming 51
2.4 Concluding Remarks 53
References 55
Conclusions and Future Work 71
參考文獻 Ahn, M. S., D. Kim, S. Park, and Y. G. Ham, 2019: Do We Need to Parameterize Mesoscale Convective Organization to Mitigate the MJO-Mean State Trade-Off? Geophysical Research Letters, 46, 2293-2301.
Ahn, M. S., D. Kim, Y. G. Ham, and S. Park, 2020: Role of Maritime Continent Land Convection on the Mean State and MJO Propagation. Journal of Climate, 33, 1659-1675.
Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross Moist Stability and MJO Simulation Skill in Three Full-Physics GCMs. Journal of the Atmospheric Sciences, 71, 3327-3349.
Chen, Y. C., and J. Y. Yu: Modes of tropical convection and their roles in transporting moisture and moist static energy: contrast between deep and shallow convection. Climate Dynamics.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
Dellaripa, E. M. R., and E. D. Maloney, 2015: Analysis of MJO Wind-Flux Feedbacks in the Indian Ocean Using RAMA Buoy Observations. Journal of the Meteorological Society of Japan, 93A, 1-20.
DeMott, C. A., B. O. Wolding, E. D. Maloney, and D. A. Randall, 2018: Atmospheric Mechanisms for MJO Decay Over the Maritime Continent. Journal of Geophysical Research-Atmospheres, 123, 5188-5204.
DeMott, C. A., J. J. Benedict, N. P. Klingaman, S. J. Woolnough, and D. A. Randall, 2016: Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. Journal of Geophysical Research-Atmospheres, 121, 8350-8373.
Feng, J., T. Li, and W. J. Zhu, 2015: Propagating and Nonpropagating MJO Events over Maritime Continent. Journal of Climate, 28, 8430-8449.
Fuchs, Z., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud-radiation feedbacks. Journal of the Atmospheric Sciences, 59, 1669-1679.
——, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus Series a-Dynamic Meteorology and Oceanography, 59, 344-354.
Inoue, K., and L. E. Back, 2015a: Column-Integrated Moist Static Energy Budget Analysis on Various Time Scales during TOGA COARE. Journal of the Atmospheric Sciences, 72, 1856-1871.
Inoue, K., and L. E. Back, 2015b: Gross Moist Stability Assessment during TOGA COARE: Various Interpretations of Gross Moist Stability. Journal of the Atmospheric Sciences, 72, 4148-4166.
——, 2017: Gross Moist Stability Analysis: Assessment of Satellite-Based Products in the GMS Plane. Journal of the Atmospheric Sciences, 74, 1819-1837.
Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research-Atmospheres, 120, 4718-4748.
Jiang, X. N., 2017: Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulations. Journal of Geophysical Research-Atmospheres, 122, 755-770.
Jiang, X. N., and Coauthors, 2011: Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates. Monthly Weather Review, 139, 3208-3223.
Kim, D., A. H. Sobel, and I. S. Kang, 2011: A mechanism denial study on the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 3.
Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus Nonpropagating Madden-Julian Oscillation Events. Journal of Climate, 27, 111-125.
Madden, R. A. and Julian, P. R., 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28, 702–708.
——, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29, 1109–1123.
Maloney, E. D., and S. P. Xie, 2013: Sensitivity of tropical intraseasonal variability to the pattern of climate warming. Journal of Advances in Modeling Earth Systems, 5, 32-47.
Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of the Atmospheric Sciences, 57, 1515-1535.
Neelin, J. D., and J. Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden-Julian Oscillation Part II: Analytical Theory. Journal of the Atmospheric Sciences, 51, 1876-1894.
Raymond, D. J., S. L. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The Mechanics of Gross Moist Stability. Journal of Advances in Modeling Earth Systems, 1.
Sakaeda, N., and P. E. Roundy, 2016: Gross moist stability and the Madden-Julian Oscillation in reanalysis data. Quarterly Journal of the Royal Meteorological Society, 142, 2740-2757.
Sobel, A., S. G. Wang, and D. Kim, 2014: Moist Static Energy Budget of the MJO during DYNAMO. Journal of the Atmospheric Sciences, 71, 4276-4291.
Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. Journal of Climate, 13, 4378-4392.
Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. Journal of the Atmospheric Sciences, 58, 3650-3665.
Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface Fluxes and Tropical Intraseasonal Variability: a Reassessment. Journal of Advances in Modeling Earth Systems, 2.
Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental Causes of Propagating and Nonpropagating MJOs in MJOTF/GASS Models. Journal of Climate, 30, 3743-3769.
Webster, P. J., and R. Lukas, 1992: TOGA COARE - The Coupled Ocean Atmosphere Response Experiment. Bulletin of the American Meteorological Society, 73, 1377-1416.
Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917-1932.
Wu, C. H., and H. H. Hsu, 2009: Topographic Influence on the MJO in the Maritime Continent. Journal of Climate, 22, 5433-5448.
Yanai, M., Esbensen, S., and Chu, J., 1973: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. Journal of Atmospheric Sciences, 30, 611-627.
Yu, J. Y., and J. D. Neelin, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden-Julian Oscillation Part II: Numerical Results. Journal of the Atmospheric Sciences, 51, 1895-1914.
——, 1997: Analytic approximations for moist convectively adjusted regions. Journal of the Atmospheric Sciences, 54, 1054-1063.
Yu, J. Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. Journal of the Atmospheric Sciences, 55, 1354-1372.
Zhang, C. D., 2005: Madden-Julian oscillation. Reviews of Geophysics, 43.
Zhang, C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific. Journal of Climate, 15, 2429-2445.
Zhou, L., and R. Murtugudde, 2020: Oceanic Impacts on MJOs Detouring near the Maritime Continent. Journal of Climate, 33, 2371-2388.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2021-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明