參考文獻 |
1. 莉森揪(2018), 深度學習 vs. 傳統機器學習.
2. 行銷產業科學(2019), 主成分分析的概念及應用
3. CodingNote.cc長短期記憶神經網路(LSTM)介紹以及簡單應用分析(2019)
4. Alex Sherstinsky.(2020). Fundamentals of Recurrent Neural Network(RNN) and Long Short-Term Memory(LSTM)network. Physica D: Nonlinear Phenomena, 132306.
5. Ayodele, T. O.(2010). Types of Machine Learning Algorithms.
6. Brownlee, J.(2018). How to Develop LSTM Models for Time Series Forecasting. Available from < https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/ >
7. Brownlee, J. What is Deep Learning ?(2020).
Available from < https://machinelearningmastery.com/what-is-deep-learning/ >
8. Cheng, J. C. P., Chen, W., Chen, K., Wang, Q.(2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Automation in Construction Volume 112(2020), 103087
9. Choi, S. W., Martin, E. B., Morris, A. J.(2005). Fault Detection Based on a Maximum-Likelihood Principal Component Analysis(PCA)Mixture. Ind. Eng. Chem. Res. 2005, 44, 2316-2327
10. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.(2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv:1412.3555
11. Davis, J., Goadrich, M.(2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning, pp. 233–240.
12. Efthymioua, K., Papakostasa, N., Mourtzisa, D., Chryssolouris, G.(2012). On a Predictive Maintenance Platform for Production Systems. Procedia CIRP Volume 3, 2012, Pages 221-226.
13. Grall, A., Dieulle, L., Bérenguer, C., Roussignol, M.(2002). Continuous-Time Predictive-Maintenance Scheduling for a Deteriorating System. IEEE Transactions on reliability, VOL. 51, NO. 2, JUNE 2002
14. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., Schmidhuber, J.(2017). LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.
15. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M. S.(2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.
16. Hao, Q., Xue, Y., Shen, W., Jones, B., Zhu, J.(2010). A decision support system for integrating corrective maintenance, preventive maintenance, and condition-based maintenance. Innovation for Reshaping Construction Practice (2010).
17. Hashemian, H. M.(2010). State-of-the-Art Predictive Maintenance Techniques. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 1, JANUARY 2011
18. Heng, A., Tan, A. C. C., Mathew, J., Montgomery, N., Banjevic, D., Jardine, A. K. S.(2009). Intelligent condition-based prediction of machinery reliability. Volume 23, Issue 5, July 2009, Pages 1600-1614
19. Horenbeek , A. V., Pintelon, L.(2013). A dynamic predictive maintenance policy for complex multi-component systems. Reliability Engineering & System Safety Volume 120, December 2013, Pages 39-50
20. Kaiser, K. A., Gebraeel, N. Z.(2009). Predictive Maintenance Management Using Sensor-Based Degradation Models. IEEE Transactions on systems, man, and cybernetics—part a: systems and humans, vol. 39, no. 4, july 2009
21. Kalchbrenner, N., Danihelka, I., Graves, A.(2015). GRID LONG SHORT-TERM MEMORY. Under review as a conference paper at ICLR 2016
22. Kim, T. Y., Cho, S. B.(2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy 182, 2019, Pages 72-81
23. Langone, R., Alzate, C., Ketelaere, B. D., Suykens, J. A. K.(2013). Kernel spectral clustering for predicting maintenance of industrial machines. 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)
24. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A.(2014). Improving rail network velocity: A machine learning approach to predictive maintenance. Transportation Research Part C: Emerging Technologies Volume 45, August 2014, Pages 17-26
25. Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.(2018). Independently Recurrent Neural Network(IndRNN): Building A Longer and Deeper RNN. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2018, pp. 5457-5466
26. Maind, S. B., Wankar, P.(2010). Research Paper on Basic of Artificial Neural Network. International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
27. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.(2015). Long Short Term Memory Networks for Anomaly Detection in Time Series. ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning.
28. Olah, C. Understanding LSTM networks.(2015).
Available from < http://colah.github.io/posts/2015-08-Understanding-LSTMs/ >
29. Panchal, G., Ganatra, A., Kosta, Y. P., Panchal, D.(2011). Behaviour Analysis of Multilayer Perceptrons with Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering, ISSN:1793-8201
30. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.(2018). Machine Learning approach for Predictive Maintenance in Industry 4.0. 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)
31. Sandro Sperandei.(2014). Understanding logistic regression analysis. Biochemia medica, 24(1), 12–18.
32. Shrestha, A., Mahmood, A.(2019). Review of Deep Learning Algorithms and Architectures. IEEE Access, 7, 53040–53065.
33. Song, F., Guo, Z., Mei, D.(2010). Feature Selection Using Principal Component Analysis. 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization.
34. Susto, G. A., Schirru, A., Pampuri, S., McLoone, S.(2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015
35. Sutskever, I., Martens, J., Dahl, G., Hinton, G.(2013). On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning (ICML-13), Vol. 28, pp. 1139–1147.
36. Swanson, D. C.(2001). A General Prognostic Tracking Algorithm for Predictive Maintenance. Aerospace Conference, 2001, IEEE Proceedings. Volume: 6
37. Tieleman, T., Hinton, G. E.(2012). Neural networks for machine learning. Coursera Lecture 65-RMSprop.
38. Wang, K.(2016). Intelligent Predictive Maintenance (IPdM) system – Industry 4.0 scenario. WIT Transactions on Engineering Sciences, Vol 113
39. Welz, Z. A.(2017). Integrating Disparate Nuclear Data Sources for Improved Predictive Maintenance Modeling:Maintenance-Based Prognostics for Long-Term Equipment Operation.
40. Xu, P., Du, R., Zhang, Z.(2019). Predicting pipeline leakage in petrochemical system through GAN and LSTM. Knowledge-Based Systems 175 (2019) 50-61 |