博碩士論文 108621013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.191.225.71
姓名 林宜君(Yi-Chun Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 中南半島北部春季生質燃燒對下風地區之影響
(The impact of spring biomass burning on the downward region of the northern Southeast Asia)
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣膠對於大氣環境的影響至今仍存在高度不確定性,而每年中南半島春季生質燃燒活動在區域空氣品質扮演重要的角色,前人研究使用現地觀測資料、衛星遙測技術、區域模式、資料統計等方法了解生質燃燒源區、大氣、下游地區的影響。模式評估生質燃燒活動之影響因為氣象與排放估計而存在不確定性,其中排放估計會因排放清單使用不同估算方法而使變異增加,常見方法為因地域不同對排放量進行調整藉此改善模擬結果。本研究結合氣象模式 (WRF)與化學模式 (CMAQ)模擬,使用煙流上升模組 (PLMRIM)改善污染物因複雜的地形效應而不易上升至自由大氣之問題,且不必再對火點排放資料 (FINN)另外進行調整,了解聖嬰及反聖嬰年不同氣象條件對於生質燃燒源區污染排放、污染物上升高度、傳輸路徑、下游地區影響頻率與時間長度之影響並進行特徵分析。
由模擬結果顯示,聖嬰年 (2010年)替中南半島提供乾燥、溫暖、相對低壓的氣象條件,有助於污染物的排放與傳輸,污染物在自由大氣的傳輸路徑受中緯度槽脊系統發展影響,而槽脊系統的移動使台灣大氣背景站鹿林山 (LABS)在污染事件發生時,污染物持續影響鹿林山3-4天。反聖嬰年 (2011年)中南半島受東北季風影響,海陸溫差小,燃燒範圍較小、燃燒頻率低,不利於污染物的排放與垂直傳輸,因為台灣長時間處於西風帶上,因此污染物影響鹿林山時間增長。此外,污染物從源區地表抬升至自由大氣主要的機制分為熱力及動力兩類,熱力作用為劇烈燃燒使大氣不穩定度增加,動力作用為水平風場的輻合效應、垂直風切的大小、鋒面系統的垂直運動。熱力與動力作用使污染物離開源區地表隨西風帶傳送至下風地區。
摘要(英) Biomass burning (BB) emissions in peninsular Southeast Asia have a large impact on regional air quality, but are also elevated to higher altitudes and then transported long distances. This extended footprint of BB plumes significantly impacts downwind locations and the global climate. However, model evaluation of these BB emissions and transport are complicated by uncertainties stemming from long-term meteorological components like El Niño-Southern Oscillation (ENSO) and spatial and temporal variability of BB emissions in the peninsular Southeast Asia region. In this research, we used Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) modeling system integrated with the plume rise module (PLMRIM) to capture the elevation of peninsular Southeast Asia BB plumes into the free troposphere, and subsequently the transport to Lulin Atmospheric Background Station (LABS) in central Taiwan.
To account for ENSO impacts, the rising plume height, transport route, and impact frequency on downwind areas were all evaluated in the model simulations. Our results reveal the key factors for elevating the BB emissions to the free troposphere are biomass burning intensity, convergence of the horizontal wind field and vertical wind shear, and vertical motion ahead of a frontal system. El Niño is associated with dry, warm and relatively low-pressure weather conditions over peninsular Southeast Asia, thus generating more favorable conditions for BB aerosols in our model to reach the altitudes needed for long-range transport. During El Niño, BB plumes enable long-range transport by mid-latitude trough-and-ridge system. Arrival of the plumes to LABS occurred 3-4 days after emission in our model. During La Niña, BB is less frequent and of lower intensity, limiting the vertical transport of pollutants.
關鍵字(中) ★ 生質燃燒 關鍵字(英) ★ Biomass Burning
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、 前言 1
1-1 研究動機 1
1-2 研究目的 3
二、 文獻回顧 4
2-1 氣象與排放量對污染濃度之影響 4
2-2 聖嬰年對於源區與匯區之影響 4
2-3 生質燃燒之相關研究 5
2-4 中南半島污染物之傳輸機制 6
2-5 7-SEAS相關文獻 7
2-6 評估模式與排放清單 9
三、 研究方法 12
3-1 研究範圍與時間 12
3-2 現地觀測 12
3-3 衛星遙測資料應用 13
3-4 MERRA-2再分析場 13
3-5 ONI 14
3-6 HYSPLIT模式 14
3-7 氣象模式 15
3-8 化學傳輸模式 16
3-9 排放資料清單 18
3-9-1 人為排放清單 18
3-9-2 生物排放清單 19
3-9-3 生質燃燒排放清單 19
四、 結果與討論 23
4-1 模式模擬與觀測分析比對 23
4-1-1 氣象模式比對 23
4-1-2 化學模式比對 30
4-2 聖嬰年與反聖嬰年特性分析 31
4-2-1 ONI指數 31
4-2-2 污染排放 32
4-2-3 天氣型態 33
4-3 長程傳送型態 38
4-3-1 聖嬰年個案 (2010年) 42
4-3-2 反聖嬰年個案 (2011年) 58
4-4 聖嬰年與反聖嬰年下風處污染差異 74
4-5 中南半島源區生質燃燒污染物之升起機制 82
五、 結論與展望 97
5-1 結論 97
5-2 展望 98
參考資料 99
參考文獻 行政院環境保護署,2015:空氣品質模式模擬規範。https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL005316 (取用日期:2021.06)。
吳映蓁,2021:2019年春季探國北部無人機觀測實驗:邊界層特徵與氣膠垂直分布之研究。國立中央大學大氣物理所碩士論文,中壢。
Bhattarai, H., E. Saikawa, X. Wan, H. Zhu, K. Ram, S. Gao, S. Kang, Q. Zhang, Y. Zhang, G. Wu, X. Wang, K. Kawamura, P. Fu, and Z. Cong (2019), Levoglucosan as a tracer of biomass burning: Recent progress and perspectives, Atmospheric Research, 220, 20-33, doi:10.1016/j.atmosres.2019.01.004.
Byun, D., and K. L. Schere (2006), Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Applied Mechanics Reviews, 59(2), 51-77, doi:10.1115/1.2128636.
Chen, L., Q. Li, D. Wu, H. Sun, Y. Wei, X. Ding, H. Chen, T. Cheng, and J. Chen (2019), Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation, Sci Total Environ, 674, 179-188, doi:10.1016/j.scitotenv.2019.03.419.
Chuang, M.-T., C. C. K. Chou, K. Sopajaree, N.-H. Lin, J.-L. Wang, G.-R. Sheu, Y.-J. Chang, and C.-T. Lee (2013), Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment, Atmospheric Environment, 78, 72-81, doi:10.1016/j.atmosenv.2012.06.056.
Chuang, M.-T., J. S. Fu, C.-T. Lee, N.-H. Lin, Y. Gao, S.-H. Wang, G.-R. Sheu, T.-C. Hsiao, J.-L. Wang, M.-C. Yen, T.-H. Lin, and N. Thongboonchoo (2016), The Simulation of Long-Range Transport of Biomass Burning Plume and Short-Range Transport of Anthropogenic Pollutants to a Mountain Observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment, Aerosol and Air Quality Research, 16(11), 2933-2949, doi:10.4209/aaqr.2015.07.0440.
Chuang, M.-T., J. S. Fu, N.-H. Lin, C.-T. Lee, Y. Gao, S.-H. Wang, G.-R. Sheu, T.-C. Hsiao, J.-L. Wang, M.-C. Yen, T.-H. Lin, N. Thongboonchoo, and W.-C. Chen (2015), Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment, Atmospheric Environment, 112, 294-305, doi:10.1016/j.atmosenv.2015.04.055.
Cohen, M. D., B. J. B. Stunder, G. D. Rolph, R. R. Draxler, A. F. Stein, and F. Ngan (2015), NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96(12), 2059-2077, doi:10.1175/bams-d-14-00110.1.
Diapouli, E., O. Popovicheva, M. Kistler, S. Vratolis, N. Persiantseva, M. Timofeev, A. Kasper-Giebl, and K. Eleftheriadis (2014), Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010, Atmospheric Environment, 96, 393-404, doi:10.1016/j.atmosenv.2014.07.055.
Dong, X., and J. S. Fu (2015a), Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part I: Model evaluation and analysis of systematic bias, Atmospheric Environment, 116, 293-307, doi:10.1016/j.atmosenv.2015.06.026.
Dong, X., and J. S. Fu (2015b), Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part II: Variability and different influences in lower and higher atmosphere levels, Atmospheric Environment, 115, 9-18, doi:10.1016/j.atmosenv.2015.05.052.
Dong, X., J. S. Fu, K. Huang, N. H. Lin, S. H. Wang, and C. E. Yang (2018), Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region, Sci Rep, 8(1), 8962, doi:10.1038/s41598-018-27129-2.
Draxler, R. R., and G. D. Hess (1998), An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition, Australian Meteorological Magazine, 47, 295-308.
Duncan, B. N., B. N. Duncan, R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan (2003), Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, Journal of Geophysical Research, 108(D2), doi:10.1029/2002jd002378.
Edwards, D. P., L. K. Emmons, J. C. Gille, A. Chu, J. L. Attié, L. Giglio, S. W. Wood, J. Haywood, M. N. Deeter, S. T. Massie, D. C. Ziskin, and J. R. Drummond (2006), Satellite-observed pollution from Southern Hemisphere biomass burning, Journal of Geophysical Research, 111(D14), doi:10.1029/2005jd006655.
Fu, J. S., N. C. Hsu, Y. Gao, K. Huang, C. Li, N. H. Lin, and S. C. Tsay (2012), Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling, Atmospheric Chemistry and Physics, 12(9), 3837-3855, doi:10.5194/acp-12-3837-2012.
Gao, S., D. A. Hegg, P. V. Hobbs, T. W. Kirchstetter, B. I. Magi, and M. Sadilek (2003), Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, Journal of Geophysical Research: Atmospheres, 108(D13), n/a-n/a, doi:10.1029/2002jd002324.
Gelaro, R., W. McCarty, M. J. Suarez, R. Todling, A. Molod, L. Takacs, C. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. da Silva, W. Gu, G. K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao (2017), The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J Clim, Volume 30(Iss 13), 5419-5454, doi:10.1175/JCLI-D-16-0758.1.
Graham, B., O. L. Mayol-Bracero, P. Guyon, G. C. Roberts, S. Decesari, M. C. Facchini, P. Artaxo, W. Maenhaut, P. Köll, and M. O. Andreae (2002), Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS, Journal of Geophysical Research, 107(D20), doi:10.1029/2001jd000336.
Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang (2012), The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5(6), 1471-1492, doi:10.5194/gmd-5-1471-2012.
Holton, J. R. (2004), An Introduction to Dynamic Meteorology.
Hsu, C.-H., and F.-Y. Cheng (2019), Synoptic Weather Patterns and Associated Air Pollution in Taiwan, Aerosol and Air Quality Research, 19(5), 1139-1151, doi:10.4209/aaqr.2018.09.0348.
Huang, H. Y., S. H. Wang, W. X. Huang, N. H. Lin, M. T. Chuang, A. M. Silva, and C. M. Peng (2020), Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols, Journal of Geophysical Research: Atmospheres, 125(3), doi:10.1029/2019jd031260.
Huang, K., J. S. Fu, N. C. Hsu, Y. Gao, X. Dong, S.-C. Tsay, and Y. F. Lam (2013), Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA, Atmospheric Environment, 78, 291-302, doi:10.1016/j.atmosenv.2012.03.048.
Huang, K., J. S. Fu, N. H. Lin, S. H. Wang, X. Dong, and G. Wang (2019), Superposition of Gobi Dust and Southeast Asian Biomass Burning: The Effect of Multisource Long‐Range Transport on Aerosol Optical Properties and Regional Meteorology Modification, Journal of Geophysical Research: Atmospheres, 124(16), 9464-9483, doi:10.1029/2018jd030241.
Huang, W. R., S. H. Wang, M. C. Yen, N. H. Lin, and P. Promchote (2016), Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts, J Geophys Res Atmos, 121(17), 10016-10028, doi:10.1002/2016JD025286.
Inness, A., A. Benedetti, J. Flemming, V. Huijnen, J. W. Kaiser, M. Parrington, and S. Remy (2015), The ENSO signal in atmospheric composition fields: emission-driven versus dynamically induced changes, Atmospheric Chemistry and Physics, 15(15), 9083-9097, doi:10.5194/acp-15-9083-2015.
IPCC. (2001), Climate Change 2001: The Scientific Basis, Cambridge University Press.
Islam, M., A. Chan, M. Ashfold, C. Ooi, and M. Azari (2018), Effects of El-Niño, Indian Ocean Dipole, and Madden-Julian Oscillation on Surface Air Temperature and Rainfall Anomalies over Southeast Asia in 2015, Atmosphere, 9(9), doi:10.3390/atmos9090352.
Ito, A., and J. E. Penner (2004), Global estimates of biomass burning emissions based on satellite imagery for the year 2000, Journal of Geophysical Research, 109(D14), doi:10.1029/2003jd004423.
Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, and D. R. Worsnop (2009), Evolution of organic aerosols in the atmosphere., Science 326, 1525-1529.
Khamkaew, C., S. Chantara, R. Janta, S. K. Pani, T. Prapamontol, S. Kawichai, W. Wiriya, and N.-H. Lin (2016), Investigation of Biomass Burning Chemical Components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 Campaign, Aerosol and Air Quality Research, 16(11), 2655-2670, doi:10.4209/aaqr.2016.03.0105.
Klimont, Z., K. Kupiainen, C. Heyes, P. Purohit, J. Cofala, P. Rafaj, J. Borken-Kleefeld, and W. Schöpp (2017), Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17(14), 8681-8723, doi:10.5194/acp-17-8681-2017.
Li, M., Q. Zhang, J. I. Kurokawa, J. H. Woo, K. He, Z. Lu, T. Ohara, Y. Song, D. G. Streets, G. R. Carmichael, Y. Cheng, C. Hong, H. Huo, X. Jiang, S. Kang, F. Liu, H. Su, and B. Zheng (2017), MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17(2), 935-963, doi:10.5194/acp-17-935-2017.
Lin, C.-Y., H.-m. Hsu, Y. H. Lee, C. H. Kuo, Y.-F. Sheng, and D. A. Chu (2009), A new transport mechanism of biomass burning from Indochina as identified by modeling studies, Atmospheric Chemistry and Physics, 9, 7901–7911.
Lin, C. Y., C. Zhao, X. Liu, N.-H. Lin, and W.-N. Chen (2014a), Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia, Tellus B: Chemical and Physical Meteorology, 66(1), doi:10.3402/tellusb.v66.23733.
Lin, N.-H., A. M. Sayer, S.-H. Wang, A. M. Loftus, T.-C. Hsiao, G.-R. Sheu, N. C. Hsu, S.-C. Tsay, and S. Chantara (2014b), Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives, Environmental pollution, 2014 v.195, pp. 292-307, doi:10.1016/j.envpol.2014.06.036.
Mehmood, K., S. Chang, S. Yu, L. Wang, P. Li, Z. Li, W. Liu, D. Rosenfeld, and J. H. Seinfeld (2018), Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016, Environmental Chemistry Letters, 16(1), 301-309, doi:10.1007/s10311-017-0675-6.
Nam, J., Y. Wang, C. Luo, and D. A. Chu (2010), Trans-Pacific transport of Asian dust and CO: accumulation of biomass burning CO in the subtropics and dipole structure of transport, Atmos. Chem. Phys., 10(7), 3297-3308, doi:10.5194/acp-10-3297-2010.
NCEP (2000), NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, edited, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, doi:10.5065/D6M043C6.
Nguyen, G. T. H., H. Shimadera, K. Uranishi, T. Matsuo, and A. Kondo (2019), Numerical assessment of PM2.5 and O3 air quality in Continental Southeast Asia: Impacts of potential future climate change, Atmospheric Environment, 215, doi:10.1016/j.atmosenv.2019.116901.
Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka (2007), An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7(16), 4419-4444, doi:10.5194/acp-7-4419-2007.
Oleson, K. W., D. M. Lawrence, G. B. Bonan, M. G. Flanner, E. Kluzek, P. J. Lawrence, S. Levis, S. C. Swenson, P. E. Thornton, A. Dai, M. Decker, R. Dickinson, J. Feddema, C. L. Heald, F. Hoffman, J.-F. Lamarque, N. Mahowald, G.-Y. Niu, T. Qian, J. Randerson, S. Running, K. Sakaguchi, A. Slater, R. Stockli, A. Wang, Z.-L. Yang, X. Zeng, and X. Zeng (2010), Technical Description of version 4.0 of the Community Land Model (CLM).
Ooi, M. C.-G., M.-T. Chuang, J. S. Fu, S. S. Kong, W.-S. Huang, S.-H. Wang, S. Pimonsree, A. Chan, S. K. Pani, and N.-H. Lin (2021), Improving prediction of trans-boundary biomass burning plume dispersion: from northern peninsular Southeast Asia to downwind western North Pacific Ocean, Atmospheric Chemistry and Physics, 21(16), 12521-12541, doi:10.5194/acp-21-12521-2021.
Oozeer, M. Y., A. Chan, M. C.-G. Ooi, A. M. Zarzur, S. V. Salinas, B.-N. Chew, K. I. Morris, and W.-K. Choong (2016), Numerical Study of the Transport and Convective Mechanisms of Biomass Burning Haze in South-Southeast Asia, Aerosol and Air Quality Research, 16(11), 2950-2963, doi:10.4209/aaqr.2015.07.0461.
Pani, S. K., S. Chantara, C. Khamkaew, C.-T. Lee, and N.-H. Lin (2019), Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure, Atmospheric Research, 224, 180-195, doi:10.1016/j.atmosres.2019.03.031.
Pani, S. K., N.-H. Lin, S. Chantara, S.-H. Wang, C. Khamkaew, T. Prapamontol, and S. Janjai (2018), Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia, The Science of the total environment, 2018 v.633, pp. 892-911, doi:10.1016/j.scitotenv.2018.03.204.
Pimonsree, S., and P. Vongruang (2018), Impact of biomass burning and its control on particulate matter over a city in mainland Southeast Asia during a smog episode, Atmospheric Environment, 195, 196-209, doi:10.1016/j.atmosenv.2018.09.053.
Pimonsree, S., P. Vongruang, and S. Sumitsawan (2017), Modified biomass burning emission in modeling system with fire radiative power: Simulation of particulate matter in Mainland Southeast Asia during smog episode, Atmospheric Pollution Research, 2017, doi:10.1016/j.apr.2017.08.002.
Pio, C. A., M. Legrand, C. A. Alves, T. Oliveira, J. Afonso, A. Caseiro, H. Puxbaum, A. Sanchez-Ochoa, and A. Gelencsér (2008), Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period, Atmospheric Environment, 42(32), 7530-7543, doi:10.1016/j.atmosenv.2008.05.032.
Reid, J. S., E. J. Hyer, E. M. Prins, D. L. Westphal, J. Zhang, J. Wang, S. A. Christopher, C. A. Curtis, C. C. Schmidt, D. P. Eleuterio, K. A. Richardson, and J. P. Hoffman (2009), Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3), 144-162, doi:10.1109/jstars.2009.2027443.
Sun, J., H. Li, W. Zhang, T. Li, W. Zhao, Z. Zuo, S. Guo, D. Wu, and S. Fan (2018), Modulation of the ENSO on Winter Aerosol Pollution in the Eastern Region of China, Journal of Geophysical Research: Atmospheres, 123(21), 11,952-911,969, doi:10.1029/2018jd028534.
van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr (2006), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6(11), 3423-3441, doi:10.5194/acp-6-3423-2006.
Wang, T., S. Yang, Z. Wen, R. Wu, and P. Zhao (2011), Variations of the winter India-Burma Trough and their links to climate anomalies over southern and eastern Asia, Journal of Geophysical Research: Atmospheres, 116(D23), n/a-n/a, doi:10.1029/2011jd016373.
Wang, W., C. Bruyère, M. Duda, J. Dudhia, D. Gill, M. Kavulich, K. Keene, M. Chen, H.-C. M. Lin, J., S. Rizvi, X. Zhang, J. Berner, S. Ha, and K. Fossell (2017), WRF-ARW V3.9: User’s Guide, NCAR Tech. Note, 443.
Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and A. J. Soja (2011), The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geoscientific Model Development, 4(3), 625-641, doi:10.5194/gmd-4-625-2011.
Wiedinmyer, C., B. Quayle, C. Geron, A. Belote, D. McKenzie, X. Zhang, S. O’Neill, and K. K. Wynne (2006), Estimating emissions from fires in North America for air quality modeling, Atmospheric Environment, 40(19), 3419-3432, doi:10.1016/j.atmosenv.2006.02.010.
WRAP (2005), 2002 Fire Emission Inventory for the WRAP Region – Phase II.
Yang, Y., L. M. Russell, L. Xu, S. Lou, M. A. Lamjiri, R. C. J. Somerville, A. J. Miller, D. R. Cayan, M. J. DeFlorio, S. J. Ghan, Y. Liu, B. Singh, H. Wang, J. H. Yoon, and P. J. Rasch (2016), Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations, Journal of Geophysical Research: Atmospheres, 121(11), 6321-6335, doi:10.1002/2015jd024503.
Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50, doi:10.1016/j.atmosenv.2012.11.015.
Yuan, H., Y. Dai, Z. Xiao, D. Ji, and W. Shangguan (2011), Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling, Remote Sensing of Environment, 115(5), 1171-1187, doi:10.1016/j.rse.2011.01.001.
指導教授 林能暉(Neng-Huei Lin) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明