博碩士論文 108621005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.141.30.162
姓名 林祐瑄(Yu-Hsuan Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 桃園大氣汞分布與沈降暨顆粒汞粒徑分布特徵
相關論文
★ 鹿林山大氣汞分布與乾濕沉降特徵及來源推估★ 北台灣雨水汞濃度及濕沉降量之時空分布
★ 2009-2018年台灣市區與郊區之長期大氣汞濕沉降測量★ Characterizations of atmospheric mercury concentration and deposition at a tropical mountain background site in East Asia: insight into potential driving mechanisms
★ 鹿林山大氣汞分布變化: 氣象因子影響機制分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 汞(Hg)是一種具有神經毒性的重金屬,可藉由大氣傳送到世界各地。台灣位於全球人為汞排放最多的東亞地區,關於台灣平地大氣汞分布的研究仍有限,且缺乏長時間的連續觀測資料,因此本研究探討台灣平地大氣汞特徵,包含氣態元素汞(gaseous elemental mercury, GEM)、氣態氧化汞(gaseous oxidized mercury, GOM)以及顆粒汞(particle-bound mercury, PBM)濃度的時序變化、顆粒汞粒徑分布以及大氣汞沈降量。本研究使用2018-2020年桃園市國立中央大學校園的大氣汞連續監測觀測資料、雨水汞資料以及氣象資料,進行大氣汞濃度與乾溼沈降的特徵分析,其中乾沈降量是透過表面阻力參數化模式(surface resistance model, SRM)進行估算。此外,本研究於2020年6月至2021年5月在相同測站使用微粒分階衝擊式採樣器(Dekati PM10 Impactor)採集四種粒徑顆粒(PBM>10、PBM2.5-10、PBM1-2.5、PBM1)進行總汞分析,以探討顆粒汞濃度的粒徑分布特徵。
2018至2020年間,GEM、GOM及PBM的平均濃度(±標準差)分別為2.32 ± 4.60 ng m-3、7.1 ± 21.6 pg m-3及13.1 ± 51.4 pg m-3。整體而言,因為地區性的排放源,當風向為南或南南西時,容易出現較高的大氣汞濃度,來自該方向的氣團平均GEM濃度為4.45 ng m-3,為整體GEM平均濃度的1.8倍。同期間雨水汞權重平均濃度為10.08 ng L-1,平均年濕沈降量為15.15 μg m-2 yr-1,且呈現夏季汞沈降量較高,冬季較低的趨勢,而利用模式推估的年平均乾沈降總量為36.5 μg m-2 yr-1,桃園郊區的大氣汞沈降以乾沈降為主。顆粒汞分徑採樣分析結果,PBM>10、PBM2.5-10、PBM1-2.5、PBM1的平均濃度分別是0.6±0.3、3.7±1.92、4.1±2.2、6.6±5.3 pg m-3,分析結果顯示顆粒汞主要分布在細粒徑顆粒,且也會受到當地排放源影響,在風向為西南風時各階層顆粒汞濃度皆會上升。造成本站大氣汞濃度升高的主要事件可分為長程傳輸霾害事件、長程傳輸沙塵事件、當地弱風累積事件及當地排放源影響事件,連續監測與分徑採樣結果皆顯示當地事件通常比長程傳輸事件帶給本站更高的大氣汞濃度。
摘要(英) Mercury is a global toxicant transported primarily via atmospheric circulation. Since the majority of anthropogenic mercury emissions in the world occurred in East and South-east Asia, and Taiwan is located in the downwind region in this area, it is meaningful to examine the atmospheric mercury level in Taiwan. As previous studies in this aspect are limited and long-term observations are scarce, the present study aims to understand the characteristics of atmospheric mercury at ground level in Taiwan, including: 1) gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle-bound mercury (PBM) concentrations; 2) particle size distribution of PBM; and 3) atmospheric mercury deposition. Findings showed that between 2018 and 2020, the mean concentrations of GEM, GOM, and PBM were 2.44 ± 4.19 ng m-3, 7.1 ± 21.6 pg m-3, and 13.1 ± 51.4 pg m-3, respectively. On the whole, because of regional emissions, when the wind direction was south to south-southwest, higher mercury concentrations were observed. The GEM average concentration of air masses from SSW winds was twice the overall GEM average. The volume-weighted mean (VWM) concentration of mercury in rainwater was 10.08 ng L-1. The annual mercury wet deposition was 15.15 μg m-2 yr-1, and the total annual mercury dry deposition estimated by the model was 36.5 μg m-2 yr-1. It can be inferred that the atmospheric mercury deposition at ground level in Taiwan was dominated by dry deposition while the mercury deposition flux in summer was higher than that in winter. Furthermore, the sample of size-fractionated particulate mercury was collected between June 2020 and May 2021. The mean (± S.D.) concentrations of PBM>10, PBM2.5-10, PBM1-2.5 and PBM1 were 0.6±0.3, 3.7±1.92, 4.1±2.2 and 6.6±5.3 pg m-3, respectively. Results showed that particle-bound mercury was mainly distributed in fine particles, with PBM2.5 usually accounting for more than 70% of the total particulate mercury concentration.
關鍵字(中) ★ 大氣汞
★ 汞沉降
★ 顆粒汞
★ 顆粒汞粒徑篩分
關鍵字(英) ★ atmospheric mercury
★ mercury deposition
★ particle-bound mercury
★ size-fractionated particulate mercury
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 ix
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 6
2-1 汞的基本介紹 6
2-2 大氣汞研究 7
2-3 顆粒狀汞研究 9
2-4 大氣汞沈降 11
三、 研究方法 14
3-1研究地點 14
3-2大氣汞監測 15
3-2-1 儀器原理 15
3-2-2 儀器校正與維護 16
3-3顆粒汞分徑採樣與分析 16
3-3-1 採樣設備與方法 16
3-3-2 分析儀器與方法 19
3-3-3 採樣與分析之品保品管 22
3-4大氣汞乾沈降估算方法 26
3-4-1 乾沈降推估模式 26
3-4-2 土地利用類型 29
3-5大氣汞濕沈降採樣與估算 30
3-5-1 雨水汞採樣與分析 30
3-5-2 濕沈降估算方法 31
四、 結果與討論 32
4-1 氣象條件 32
4-2 大氣汞濃度、物種與分布 35
4-2-1 大氣汞與氣象因子 40
4-2-2 日夜分布 46
4-2-3 季節分布與年際差異 49
4-2-4 高濃度事件 57
4-3 顆粒狀汞分徑採樣 68
4-3-1 PBM粒徑分布採樣結果 68
4-3-2 時序特徵 69
4-3-3 與大氣汞濃度相關性 70
4-3-4 與氣象參數相關性 71
4-3-5 與其它空氣污染物相關性 72
4-3-6 不同採樣方法比較 73
4-3-7 高濃度事件之顆粒汞粒徑分布 74
4-4 大氣汞乾濕沈降特徵 85
4-4-1 乾沈降估算 85
4-4-2 濕沈降估算結果 88
4-4-3 大氣汞沈降特徵 89
五、 總結與建議 103
5-1總結 103
5-2未來建議 105
參考文獻 106
附錄、顆粒狀汞分徑採樣時間 112
參考文獻 呂世宗、林能暉、林登秋、許桂榮、彭啟明、王琳麒、張哲明,2021:全國酸雨監測及成份分析調查評估(第二年) 專案研究計畫。行政院環境保護署。
李天朗,2017: 北台灣雨水汞濃度及汞濕沈降量之時空分布。國立中央大學大氣物理研究所學位論文,中壢。
林達偉,2014: 鹿林山大氣汞分布與乾濕沈降特徵及來源推估。國立中央大學大氣物理研究所碩士論文,中壢。
Baker, P. G. L., E. G. Brunke, F. Slemr, and A. M. Crouch (2002), Atmospheric mercury measurements at Cape Point, South Africa, Atmospheric Environment, 36, 2459-2465.
Brigham, M. E., D. D. VanderMeulen, C. A. Eagles-Smith, D. P. Krabbenhoft, R. P. Maki, and J. F. DeWild (2021), Long-Term Trends in Regional Wet Mercury Deposition and Lacustrine Mercury Concentrations in Four Lakes in Voyageurs National Park, Applied Sciences, 11(4), doi:10.3390/app11041879.
Brunke, E.-G., C. Walters, T. Mkololo, L. Martin, C. Labuschagne, B. Silwana, F. Slemr, A. Weigelt, R. Ebinghaus, and V. Somerset (2016), Mercury in the atmosphere and in rainwater at Cape Point, South Africa, Atmospheric Environment, 125, 24-32, doi:10.1016/j.atmosenv.2015.10.059.
Chen, X., R. Balasubramanian, Q. Zhu, S. N. Behera, D. Bo, X. Huang, H. Xie, and J. Cheng (2016), Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai, Atmospheric Environment, 131, 400-408, doi:10.1016/j.atmosenv.2016.02.019.
Cheng, I., L. Zhang, and H. Mao (2015), Relative contributions of gaseous oxidized mercury and fine and coarse particle‐bound mercury to mercury wet deposition at nine monitoring sites in North America, Journal of Geophysical Research: Atmospheres, 120(16), 8549-8562, doi:10.1002/2015jd023769.
Cheng, I., L. Zhang, H. Mao, P. Blanchard, R. Tordon, and J. Dalziel (2014), Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site, Atmospheric Environment, 82, 193-205, doi:10.1016/j.atmosenv.2013.10.016.
Driscoll, C. T., R. P. Mason, H. M. Chan, D. J. Jacob, and N. Pirrone (2013), Mercury as a global pollutant: sources, pathways, and effects, Environ Sci Technol, 47(10), 4967-4983, doi:10.1021/es305071v.
Duan, L., X. Wang, D. Wang, Y. Duan, N. Cheng, and G. Xiu (2017), Atmospheric mercury speciation in Shanghai, China, The Science of the total environment, 578, 460-468, doi:10.1016/j.scitotenv.2016.10.209.
Ebinghaus, R., et al. (1999), International "eld intercomparison measurements of atmospheric mercury species at Mace Head, Ireland, Atmospheric Environment, 33, 3063-3073.
Ebinghaus, R., H. H. Kock, A. M. Coggins, T. G. Spain, S. G. Jennings, and C. Temme (2002), Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001, Atmospheric Environment, 36, 5267-5276.
Eom, S., H. Lee, J. Kim, K. Park, Y. Kim, G. R. Sheu, D. A. Gay, D. Schmeltz, and S. Han (2021), Potential sources, scavenging processes, and source regions of mercury in the wet deposition of South Korea, Sci Total Environ, 762, 143934, doi:10.1016/j.scitotenv.2020.143934.
Feddersen, D. M., R. Talbot, H. Mao, and B. C. Sive (2012), Size distribution of particulate mercury in marine and coastal atmospheres, Atmospheric Chemistry and Physics, 12(22), 10899-10909, doi:10.5194/acp-12-10899-2012.
Fu, X., X. Feng, P. Liang, H. Zhang, J. Ji, and P. Liu (2012), Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China, Atmospheric Chemistry and Physics, 12(4), 1951-1964, doi:10.5194/acp-12-1951-2012.
Fu, X., X. Feng, G. Qiu, L. Shang, and H. Zhang (2011), Speciated atmospheric mercury and its potential source in Guiyang, China, Atmospheric Environment, 45(25), 4205-4212, doi:10.1016/j.atmosenv.2011.05.012.
Gustin, M. S., H. M. Amos, J. Huang, M. B. Miller, and K. Heidecorn (2015), Measuring and modeling mercury in the atmosphere: a critical review, Atmospheric Chemistry and Physics, 15(10), 5697-5713, doi:10.5194/acp-15-5697-2015.
Han, J.-E. Kim, P.-R. Kim, W.-J. Kim, S.-M. Yi, Y.-S. Seo, and S.-H. Kim (2014), General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events, Atmospheric Environment, 94, 754-764, doi:10.1016/j.atmosenv.2014.06.002.
Han, J. Zhang, Z. Hu, Y. Ma, Y. Duan, Y. Han, X. Chen, Y. Zhou, J. Cheng, and W. Wang (2018), Particulate mercury in ambient air in Shanghai, China: Size-specific distribution, gas-particle partitioning, and association with carbonaceous composition, Environ Pollut, 238, 543-553, doi:10.1016/j.envpol.2018.03.088.
Hien, P. D., V. T. Bac, H. C. Tham, D. D. Nhan, and L. D. Vinh (2002), <Hien_2002_Influence of meteorological conditions on PM2.5 and PM2.5−10 concentrations during the monsoon season in Hanoi, Vietnam.pdf>, Atmospheric Environment, 36.
Iverfeldt, Å. (1991), Occurrence and turnover of atmospheric mercury over the nordic countries, Water Air & Soil Pollution, 56(1), 251-265, doi:10.1007/BF00342275.
Kim, P.-R., Y.-J. Han, T. M. Holsen, and S.-M. Yi (2012), Atmospheric particulate mercury: Concentrations and size distributions, Atmospheric Environment, 61, 94-102, doi:10.1016/j.atmosenv.2012.07.014.
Landis, M. S., and G. Keeler (1997), Critical Evaluation of a Modified Automatic Wet-Only Precipitation Collector for Mercury and Trace Element Determinations, Environ Sci Technol, 31, 2610-2615.
Landis, M. S., R. K. Stevens, F. Schaedlich, and E. M. Prestbo (2002), Development and Characterization of an Annular Denuder Methodology for the Measurement of Divalent Inorganic Reactive Gaseous Mercury in Ambient Air, Environ Sci Technol, 36, 3000-3009.
Li, Y., J. Feng, and H. Y. Liang (2017), The Impact of Meteorological Factors on PM2.5 Variations in Hong Kong, Earth and Environmental Science, 78, 012003.
Logar, M., M. Horvat, I. Falnoga, and V. Stibilj (2000), A methodological study of mercury speciation using Dogfish liver CRM (DOLT-2), Fresenius Journal of Analytical Chemistry 366, 453-460.
Marumoto, K., M. Hayashi, and A. Takami (2015), Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia, Atmospheric Environment, 117, 147-155, doi:10.1016/j.atmosenv.2015.07.019.
Marumoto, K., and A. Matsuyama (2014), Mercury speciation in wet deposition samples collected from a coastal area of Minamata Bay, Atmospheric Environment, 86, 220-227, doi:10.1016/j.atmosenv.2013.12.011.
Marumoto, K., et al. (2019), Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape Hedo, Okinawa, Japan, Atmosphere, 10(7), doi:10.3390/atmos10070362.
Mason, R. P., and G. R. Sheu (2002), Role of the ocean in the global mercury cycle, Global Biogeochemical Cycles, 16(4), 40-41-40-14, doi:10.1029/2001gb001440.
National Atmospheric Deposition Program, 2020. National Atmospheric Deposition Program 2019 Annual Summary. NADP Data Report 2020. Illinois State Water Survey, University of Illinois at Urbana-Champaign, IL
Nippon Instruments Corporation, 2018. Instruction Manual: Thermal Vaporization Mercury Analyzer MA-3 Solo
Nguyen, L. S. P., and G. R. Sheu (2019), Four-year Measurements of Wet Mercury Deposition at a Tropical Mountain Site in Central Taiwan, Aerosol and Air Quality Research, 19(9), 2043-2055, doi:10.4209/aaqr.2019.05.0250.
Nguyen, L. S. P., G. R. Sheu, D. W. Lin, and N. H. Lin (2019a), Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006-2016, Sci Total Environ, 686, 1049-1056, doi:10.1016/j.scitotenv.2019.05.425.
Nguyen, L. S. P., L. Zhang, D. W. Lin, N. H. Lin, and G. R. Sheu (2019b), Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent, Environ Pollut, 255(Pt 1), 113128, doi:10.1016/j.envpol.2019.113128.
Outridge, P. M., R. P. Mason, F. Wang, S. Guerrero, and L. E. Heimburger-Boavida (2018), Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018, Environ Sci Technol, 52(20), 11466-11477, doi:10.1021/acs.est.8b01246.
Poissant, L., M. Pilote, P. Constant, C. Beauvais, H. H. Zhang, and X. Xu (2004), Mercury gas exchanges over selected bare soil and flooded sites in the bay St. François wetlands (Québec, Canada), Atmospheric Environment, 38(25), 4205-4214, doi:10.1016/j.atmosenv.2004.03.068.
Qin, C., Y. Wang, Y. Peng, and D. Wang (2016), Four-year record of mercury wet deposition in one typical industrial city in southwest China, Atmospheric Environment, 142, 442-451, doi:10.1016/j.atmosenv.2016.08.016.
Schroeder, W. H., K. G. Anlauf, L. A. Barrie, J. Y. Lu, A. Steffen, D. Schneeberger, and T. Berg (1998), Arctic springtime depletion of mercury, Nature, 394, 331–332.
Selin, N. E., D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode, L. Jaeglé, and D. Jaffe (2007), Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, Journal of Geophysical Research, 112(D2), doi:10.1029/2006jd007450.
Shanley, J. B., M. A. Engle, M. Scholl, D. P. Krabbenhoft, R. Brunette, M. L. Olson, and M. E. Conroy (2015), High Mercury Wet Deposition at a "Clean Air" Site in Puerto Rico, Environ Sci Technol, 49(20), 12474-12482, doi:10.1021/acs.est.5b02430.
Sheu, G.-R., N.-H. Lin, C.-T. Lee, J.-L. Wang, M.-T. Chuang, S.-H. Wang, K. H. Chi, and C.-F. Ou-Yang (2013), Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment, Atmospheric Environment, 78, 174-183, doi:10.1016/j.atmosenv.2012.07.002.
Sheu, G.-R., N.-H. Lin, J.-L. Wang, C.-T. Lee, C.-F. Ou Yang, and S.-H. Wang (2010), Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmospheric Environment, 44(20), 2393-2400, doi:10.1016/j.atmosenv.2010.04.009.
Sheu, G.-R., L. S. Phu Nguyen, M. T. Truong, and D.-W. Lin (2019), Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events, Atmospheric Environment, 214, doi:10.1016/j.atmosenv.2019.116827.
Siudek, P., I. Kurzyca, and J. Siepak (2016), Atmospheric deposition of mercury in central Poland: Sources and seasonal trends, Atmospheric Research, 170, 14-22, doi:10.1016/j.atmosres.2015.11.004.
Slemr, F., E.-G. Brunke, R. Ebinghaus, C. Temme, J. Munthe, I. Wängberg, W. Schroeder, A. Steffen, and T. Berg (2003), Worldwide trend of atmospheric mercury since 1977, Geophysical Research Letters, 30(10), n/a-n/a, doi:10.1029/2003gl016954.
Slemr, F., and H. E. Scheel (1998), Trends in atmospheric mercury concentrations at the summit of the Wank mountain, Southern Germany, Atmospheric Environment, 32, 845-853.
Streets, D. G., H. M. Horowitz, Z. Lu, L. Levin, C. P. Thackray, and E. M. Sunderland (2019), Global and regional trends in mercury emissions and concentrations, 2010–2015, Atmospheric Environment, 201, 417-427, doi:10.1016/j.atmosenv.2018.12.031.
Talbot, R., H. Mao, D. Feddersen, M. Smith, S. Y. Kim, B. Sive, K. Haase, J. Ambrose, Y. Zhou, and R. Russo (2011), Comparison of Particulate Mercury Measured with Manual and Automated Methods, Atmosphere, 2(1), 1-20, doi:10.3390/atmos2010001.
Tang, Y., S. Wang, Q. Wu, K. Liu, Z. Li, J. Zou, D. Hou, Y. Wu, and L. Duan (2019), Measurement of size-fractionated particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury, Sci Total Environ, 675, 176-183, doi:10.1016/j.scitotenv.2019.04.245.
Tekran Inc, 2002. Model 2537A Mercury Vapor Analyzer User Manual. Canada, Toronto.
Truong Minh Tri, 2020: Long-term atmospheric mercury wet deposition measurements at urban and suburban sites in Taiwan in 2009-2018. National Central University
UN Environment., 2019. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.
United States Environmental Protection Agency (US EPA), 2007, Method 7473, Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry
Wang, C., Z. Wang, and X. Zhang (2021), Speciated atmospheric mercury during haze and non-haze periods in winter at an urban site in Beijing, China: Pollution characteristics, sources, and causes analyses, Atmospheric Research, 247, doi:10.1016/j.atmosres.2020.105209.
Wright, L. P., and L. Zhang (2015), An approach estimating bidirectional air-surface exchange for gaseous elemental mercury at AMNet sites, Journal of Advances in Modeling Earth Systems, 7(1), 35-49, doi:10.1002/2014ms000367.
Xiu, G. L., Q. Jin, D. Zhang, S. Shi, X. Huang, W. Zhang, L. Bao, P. Gao, and B. Chen (2005), Characterization of size-fractionated particulate mercury in Shanghai ambient air, Atmospheric Environment, 39(3), 419-427, doi:10.1016/j.atmosenv.2004.09.046.
Xu, L., J. Chen, L. Yang, Z. Niu, L. Tong, L. Yin, and Y. Chen (2015), Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China, Chemosphere, 119, 530-539, doi:https://doi.org/10.1016/j.chemosphere.2014.07.024.
Zhang, L., et al. (2012), Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America, Atmospheric Chemistry and Physics, 12(9), 4327-4340, doi:10.5194/acp-12-4327-2012.
Zhang, L., J. R. Brook, and R. Vet (2003), A revised parameterization for gaseous dry deposition in air-quality models, Atmospheric Chemistry and Physics, 3, 2067-2082.
Zhang, L., and Z. He (2014), Technical Note: An empirical algorithm estimating dry deposition velocity of fine, coarse and giant particles, Atmospheric Chemistry and Physics, 14(7), 3729-3737, doi:10.5194/acp-14-3729-2014.
Zhang, L., L. P. Wright, and P. Blanchard (2009), A review of current knowledge concerning dry deposition of atmospheric mercury, Atmospheric Environment, 43(37), 5853-5864, doi:10.1016/j.atmosenv.2009.08.019.
Zhang, L., P. Zhou, S. Cao, and Y. Zhao (2019), Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations: a critical review, Atmospheric Chemistry and Physics, 19(24), 15587-15608, doi:10.5194/acp-19-15587-2019.
Zhao, C.-X., Y.-Q. Wang, Y.-J. Wang, H.-L. Zhang, and B.-Q. Zhao (2014), Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing, Huan Jing Ke Xue, 35(2), 418-427.
Zhou, H., C. Zhou, P. K. Hopke, and T. M. Holsen (2018), Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients, Science of The Total Environment, 637-638, 943-953, doi:https://doi.org/10.1016/j.scitotenv.2018.05.047.
Zhu, J., et al. (2014), Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China, Atmospheric Chemistry and Physics, 14(5), 2233-2244, doi:10.5194/acp-14-2233-2014.
指導教授 許桂榮(Guey-Rong Sheu) 審核日期 2021-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明