博碩士論文 105324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.225.98.116
姓名 黃俊凱(Chun-Kai Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈣鈦礦電池之覆晶封裝開發與失效機制
(The development of flip-chip package perovskite solar cells and failure mechanism)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-1以後開放)
摘要(中) 在高光電轉換效率且可以製作成軟性元件的優勢下,鈣鈦礦電池從2009年起被廣泛的研究。 然而,吸光層中的不穩定的銨鹽與碘離子造成鈣鈦礦電池在高濕度環境下穩定性不佳。除了改質吸光層與結構,封裝結構也可以有效改善鈣鈦礦電池的穩定度。 儘管三明治玻璃夾層搭配有機材料的封裝結構可以通過濕熱測試,過大的封裝體體積將減少薄膜電池單位體積產生的功率。 因此表面沉積氧化物或氮化物薄膜達到阻水氣氧氣的封裝結構受到各方學者注意。 原子沉積(ALD)氧化鋁薄膜是最有效的封裝方式,但是受限於電池面積與過度耗時的缺點而不宜商業化。 在第四章節,為解決鈣鈦礦電池的封裝問題,我們決定開發鈣鈦礦電池的覆晶封裝。 表面鈍化的製程中,熱累積的效應會明顯影響電池的效率。 因此以電漿輔助化學氣相沉積(PECVD)的氮化矽薄膜作為主要抗水氧層,並搭配有機材料、低溫(< 90℃)錫鉍銦焊料與圖案化基板,完成鈣鈦礦電池的覆晶封裝。分析可靠度測試的結果,意外發現純水環境中的封裝電池保有90.2 %的起始效率,高於氮氣環境中的79 % (570 小時)。 我們認為封裝的鈣鈦礦電池承受的風險(risk index)與環境中的氧氣/濕度比例有關,而不是水氣與氧氣的含量。 在第五章,我們分析不同殘留應力([Si-H]/[Si-N])的氮化矽薄膜在氮氣、氧氣與水氣環境下的失效機制。 從傅立葉轉換紅外光譜(FTIR),我們發現氮化矽薄膜的Si-H鍵氧化受到Si-N鍵的保護。 從電子顯微鏡(SEM)的結果發現,殘留的拉伸應力會增加氣體擴散進入氮化物-金屬的介面。 在氧氣/水氣複合環境中,氧氣將作為「環境緩衝」的腳色與水氣競爭表面吸附,而降低氮化矽薄膜的氧化程度。 然而,氧氣作為環境緩衝層的能力隨著環境氧氣濃度上升而失效,甚至因為擴散促使薄膜與基板分層。 我們發現氮化矽的氧化程度與不僅與薄膜本質([Si-H]/[Si-N])相關,甚至須考慮環境的氧氣/濕度比例。 藉由以上分析,本研究提出氮化矽薄膜在氧氣與水氣環境下的失效機制。 最終,綜合氧化與分層的結果進一步提出氮化矽薄膜在氧氣/水氣混和環境中的失效機制。
摘要(英) Perovskite solar cells were well study since 2009 since the high power conversion efficiency (PCE) and capable of making flexible device. However, unstable alkylammonium salts and iodine ions in the absorption layer lead to the perovskite solar cells low reliability in high humidity ambient. Except the modification of absorption layer or the design structure of perovskite solar cells, the package process can also effectively improve the stability. Despite the common glass-glass sandwich structure with organic sealing can pass the damp heat test, the over-size package will reduce the power per unit volume of thin film solar cell. Therefore, the package structure with nitride/oxide surface passivation film blocking the oxygen and humidity was studied. The Al oxide deposited by ALD was the most effective process, however, the less process-area and time-consuming shortcoming making it hard to commercialize. In order to solve the packing issue mention above, we develop the flip-chip package process of the perovskite solar cells in the Chapter 4. The flip –chip package process was developed with PECVD Si nitride film with chemical materials, low temperature (< 90 ℃) Sn-Bi-In solders and pattern glass substrate. From the reliability test, we surprising finds packaged solar cells remain 90.2 % in the DI-water ambient, however, it only remains 79 % in the N2 ambient (570 hours). We consider not the amount but the ratio of oxygen/humidity in the ambient related with risk index of the packaged perovskite solar cell. In the chapter 5, we analyzed the failure mechanism of different residual stress Si nitride film in the N2, O2 and H2O ambient, which depends on [Si-H]/[Si-N]. From the Fourier-transform infrared spectroscopy (FTIR), we finds the Si-H bonds were passivated by the Si-N bonds. From the Scanning Electron Microscope (SEM), the residual stress enhanced the gas diffusion into the nitride-metal interface. In the oxygen/humidity hybrid ambient, the oxygen was consider as the ambient buffer to decrease the oxidation by conducting the surface competitive adsorption. However, the oxygen acted as ambient buffer was vanished since increasing of oxygen, the delamination happened as well. We finds the Si nitride oxidation depends not only the intrinsic property ([Si-H]/[Si-N]) but also oxygen/humidity of ambient. According to the analysis above, this study illustrated the delamination mechanism of Si nitride film under O2 and H2O ambient. Finally, after understanding the oxidation and delamination, we recognized the delamination of Si nitride film in the oxygen/humidity hybrid ambient.
關鍵字(中) ★ 鈣鈦礦電池
★ 覆晶封裝
★ 鈍化層
★ 氮化矽薄膜
★ 可靠度測試
關鍵字(英) ★ perovskite solar cell
★ flip-chip package
★ passivation layer
★ Si nitride thin film
★ reliability test
論文目次 中文摘要 i
Abstract ii
Table of Content v
List of figures vii
List of tables x
Chapter 1: Introduction 1
1.1 Background of perovskite solar cell 1
1.2 Package of perovskite solar cell 6
1.3 Plasma enhanced chemical vapor passivation process 9
Chapter 2: Motivation: 12
2.1 Development of low temperature flip-chip process of perovskite solar cell 12
Chapter 3: Experiment procedure 14
3.1 Fabrication of flip-chip packaged perovskite solar cell 14
3.2 Reliability test of package perovskite solar cell 19
3.3 Different SiH4/NH3 ratio of PECVD Si nitride thin film 19
3.4 Reliability test of different SiH4/NH3 ratio PECVD Si nitride thin film 20
Chapter 4: Development of low-temperature package of perovskite solar cell 21
4.1 Effect of individual package process on PCE of perovskite solar cell 21
4.1-1 Effect of the surface passivation process on PCE 21
4.1-2 Effect of the flip-chip package process on PCE 23
4.2 Reliability tests on the flip-chip packaged perovskite solar cells 26
4.3 Kinetic analysis of reliability test on the package perovskite solar cell 34
Chapter 5: Delamination mechanism of Si nitride passivation layer 38
5.1 Reliability test of PECVD Si nitride thin film in pure gas ambient 38
5.1-1 SEM results of H:SiN1.4 (7 sccm NH3/ 10 sccm SiH4) 39
5.1-2 SEM results of H:SiN0.4 (7 sccm NH3/ 15 sccm SiH4) 40
5.1-3 SEM results of H:SiN0.1 (7 sccm NH3/ 20 sccm SiH4) 40
5.1-4 FTIR results of H:SiN1.4 (7 sccm NH3/ 10 sccm SiH4) 46
5.1-5 FTIR results of H:SiN0.4 (7 sccm NH3/ 15 sccm SiH4) 47
5.1-6 FTIR results of H:SiN0.1 (7 sccm NH3/ 20 sccm SiH4) 48
5.2 Reliability test of PECVD Si nitride thin film in hybrid gas ambient 54
5.2-1 H:SiN1.4 (7 sccm NH3/ 10 sccm SiH4) thin film 54
5.2-2 H:SiN0.4 (7 sccm NH3/ 15 sccm SiH4) thin film 56
5.2-3 H:SiN0.1 (7 sccm NH3/ 20 sccm SiH4) thin film 57
5.3 Delamination considering intrinsic Si nitride property and ambient 65
Chapter 6: Summary 68
Reference: 69
參考文獻 [1] Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013;501:395-8.
[2] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. science. 2014;345:295-8.
[3] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 2009;131:6050-1.
[4] Meng L, You J, Guo T-F, Yang Y. Recent advances in the inverted planar structure of perovskite solar cells. Accounts of chemical research. 2016;49:155-65.
[5] Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, et al. Inorganic perovskite solar cells: an emerging member of the photovoltaic community. Journal of Materials Chemistry A. 2019;7:21036-68.
[6] Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Materials today. 2015;18:65-72.
[7] Yin W-J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters. 2014;104:063903.
[8] Corsini F, Griffini G. Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. Journal of Physics: Energy. 2020;2:031002.
[9] Powalla M, Paetel S, Ahlswede E, Wuerz R, Wessendorf CD, Magorian Friedlmeier T. Thin‐film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu (In, Ga) Se2-, and perovskite-based materials. Applied Physics Reviews. 2018;5:041602.
[10] Green MA, Dunlop ED, Hohl‐Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications. 2020;28:629-38.
[11] Kang S, Jeong J, Cho S, Yoon YJ, Park S, Lim S, et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A. 2019;7:1107-14.
[12] Lee G, Kim M-c, Choi YW, Ahn N, Jang J, Yoon J, et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy & Environmental Science. 2019;12:3182-91.
[13] Leijtens T, Bush K, Cheacharoen R, Beal R, Bowring A, McGehee MD. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A. 2017;5:11483-500.
[14] Pearson AJ, Eperon GE, Hopkinson PE, Habisreutinger SN, Wang JTW, Snaith HJ, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3‐xClx perovskite solar cells: kinetics and mechanisms. Advanced Energy Materials. 2016;6:1600014.
[15] Yu X, Qin Y, Peng Q. Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy. The Journal of Physical Chemistry A. 2017;121:1169-74.
[16] Aristidou N, Sanchez‐Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie. 2015;127:8326-30.
[17] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam MS, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature communications. 2017;8:1-10.
[18] Asghar M, Zhang J, Wang H, Lund P. Device stability of perovskite solar cells–A review. Renewable and Sustainable Energy Reviews. 2017;77:131-46.
[19] Shi L, Young TL, Kim J, Sheng Y, Wang L, Chen Y, et al. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS applied materials & interfaces. 2017;9:25073-81.
[20] Zhao J, Brinkmann K, Hu T, Pourdavoud N, Becker T, Gahlmann T, et al. Self‐encapsulating thermostable and air‐resilient semitransparent perovskite solar cells. Advanced Energy Materials. 2017;7:1602599.
[21] Bush KA, Palmstrom AF, Zhengshan JY, Boccard M, Cheacharoen R, Mailoa JP, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy. 2017;2:1-7.
[22] Bella F, Griffini G, Correa-Baena J-P, Saracco G, Grätzel M, Hagfeldt A, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science. 2016;354:203-6.
[23] Alcaire M, Aparicio FJ, Obrero J, López‐Santos C, Garcia‐Garcia FJ, Sánchez‐Valencia JR, et al. Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: from Surface‐Supported to On‐Device Nanostructures. Advanced Functional Materials. 2019;29:1903535.
[24] Cheacharoen R, Rolston N, Harwood D, Bush KA, Dauskardt RH, McGehee MD. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy & Environmental Science. 2018;11:144-50.
[25] Cheacharoen R, Boyd CC, Burkhard GF, Leijtens T, Raiford JA, Bush KA, et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustainable Energy & Fuels. 2018;2:2398-406.
[26] Kempe MD, Jorgensen GJ, Terwilliger KM, McMahon TJ, Kennedy CE, Borek TT. Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Solar energy materials and solar cells. 2007;91:315-29.
[27] Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley PA, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy. 2016;30:162-72.
[28] Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316-9.
[29] Elenius P, Levine L. Comparing flip-chip and wire-bond interconnection technologies. Chip Scale Review. 2000;4.
[30] Zhang Z, Wong C. Flip-chip underfill: Materials, process and reliability. Materials for advanced packaging. 2009:307-37.
[31] Zhao O, Ding Y, Pan Z, Rolston N, Zhang J, Dauskardt RH. Open-air plasma-deposited multilayer thin-film moisture barriers. ACS applied materials & interfaces. 2020;12:26405-12.
[32] Idigoras J, Aparicio FJ, Contreras-Bernal L, Ramos-Terrón S, Alcaire M, Sánchez-Valencia JRn, et al. Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers. ACS applied materials & interfaces. 2018;10:11587-94.
[33] Wang H, Zhao Y, Wang Z, Liu Y, Zhao Z, Xu G, et al. Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy. 2020;69:104375.
[34] Vogt M, Hauptmann R. Plasma-deposited passivation layers for moisture and water protection. Surface and Coatings Technology. 1995;74:676-81.
[35] Chatham H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surface and Coatings Technology. 1996;78:1-9.
[36] Liao WS, Lee SC. Water‐induced room‐temperature oxidation of Si–H and–Si–Si–bonds in silicon oxide. Journal of applied physics. 1996;80:1171-6.
[37] Liao WS, Lin CH, Lee SC. Oxidation of silicon nitride prepared by plasma‐enhanced chemical vapor deposition at low temperature. Applied physics letters. 1994;65:2229-31.
[38] Lin H, Xu L, Chen X, Wang X, Sheng M, Stubhan F, et al. Moisture-resistant properties of SiNx films prepared by PECVD. Thin Solid Films. 1998;333:71-6.
[39] Yang F, Kamarudin MA, Zhang P, Kapil G, Ma T, Hayase S. Enhanced Crystallization by Methanol Additive in Antisolvent for Achieving High‐Quality MAPbI3 Perovskite Films in Humid Atmosphere. ChemSusChem. 2018;11:2348-57.
[40] Yang Z, Pan J, Liang Y, Li Q, Xu D. Ambient Air Condition for Room‐Temperature Deposition of MAPbI3 Films in Highly Efficient Solar Cells. Small. 2018;14:1802240.
[41] Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, et al. CsI Pre‐Intercalation in the Inorganic Framework for Efficient and Stable FA1− x CsxPbI3 (Cl) Perovskite Solar Cells. Small. 2017;13:1700484.
[42] Kim K-S, Imanishi T, Suganuma K, Ueshima M, Kato R. Properties of low temperature Sn–Ag–Bi–In solder systems. Microelectronics Reliability. 2007;47:1113-9.
[43] Khenkin MV, Katz EA, Abate A, Bardizza G, Berry JJ, Brabec C, et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy. 2020;5:35-49.
[44] Tomaszkiewicz I. Thermodynamics of Silicon Nitride. Standard molar enthalpy of formation of amorphous Si3N4 at 298.15 K. Journal of thermal analysis and calorimetry. 2001;65:425-33.
[45] Taga Y, Takahasi R. Role of kinetic energy of sputtered particles in thin film formation. Surface science. 1997;386:231-40.
[46] Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films. 1990;191:91-126.
[47] Vossen JL, Kern W, Kern W. Thin film processes II: Gulf Professional Publishing; 1991.
[48] Soppe W, Rieffe H, Weeber A. Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD. Progress in Photovoltaics: Research and Applications. 2005;13:551-69.
[49] Roesch R, Faber T, Von Hauff E, Brown TM, Lira‐Cantu M, Hoppe H. Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability. Advanced Energy Materials. 2015;5:1501407.
[50] Corazza M, Krebs FC, Gevorgyan SA. Lifetime of organic photovoltaics: Linking outdoor and indoor tests. Solar Energy Materials and Solar Cells. 2015;143:467-72.
[51] Reese MO, Gevorgyan SA, Jørgensen M, Bundgaard E, Kurtz SR, Ginley DS, et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells. 2011;95:1253-67.
[52] Yang J, Siempelkamp BD, Liu D, Kelly TL. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS nano. 2015;9:1955-63.
[53] Christians JA, Miranda Herrera PA, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society. 2015;137:1530-8.
[54] Huang J, Tan S, Lund PD, Zhou H. Impact of H 2 O on organic–inorganic hybrid perovskite solar cells. Energy & Environmental Science. 2017;10:2284-311.
[55] Okada Y, Nakajima Si. Measurement of local stress in silicon nitride films grown by plasma‐enhanced chemical vapor deposition using micro‐Raman spectroscopy. Applied physics letters. 1991;59:1066-8.
[56] Hasegawa S, Anbutsu H, Kurata Y. Connection between Si–N and Si–H vibrational properties in amorphous SiNx: H films. Philosophical Magazine B. 1989;59:365-75.
[57] Della Sala D, Coluzza C, Fortunato G, Evangelisti F. Infrared and optical study of a-SiN alloys. Journal of Non-Crystalline Solids. 1985;77:933-6.
[58] Sénémaud C, Gheorghiu A, Amoura L, Etemadi R, Shirai H, Godet C, et al. Local order and H-bonding in N-rich amorphous silicon nitride. Journal of non-crystalline solids. 1993;164:1073-6.
[59] Yu S-J, Li S-C, Ni Y, Zhou H. Size dependent morphologies of brittle silicon nitride thin films with combined buckling and cracking. Acta Materialia. 2017;127:220-9.
[60] Lanford W, Rand M. The hydrogen content of plasma‐deposited silicon nitride. Journal of applied physics. 1978;49:2473-7.
[61] Osenbach J, Knolle W. Behavior of a‐SiN: H and a‐SiON: H films in condensed water. Journal of the Electrochemical Society. 1992;139:3346.
[62] Yin Z, Smith F. Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis. Physical Review B. 1990;42:3666.
[63] Bustarret E, Bensouda M, Habrard M, Bruyere J, Poulin S, Gujrathi S. Configurational statistics in a-Si x N y H z alloys: A quantitative bonding analysis. Physical Review B. 1988;38:8171.
[64] Stadelmann H, Petzow G, Greil P. Effects of surface purification on the properties of aqueous silicon nitride suspensions. Journal of the European Ceramic Society. 1989;5:155-63.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2021-6-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明