博碩士論文 108426015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.147.66.178
姓名 李訓泓(Hsun-Hung Li)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 電腦即時引導揀貨系統之揀貨作業研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,隨著資訊科技及網際網路的發達,人們的消費模式不僅從以往至實體店面消費到現今多是透過網路上的電子商務平台進行購物,智慧型手機及行動網路更是越來越普及,使人們隨時隨地都可以在網路上進行消費行為。在2020年時針對臺灣網友網購行為進行調查發現2019年網友網購的行動下單比例,從2018年35.9%大幅成長至49.6%,已與一般電腦網購下單呈現55波的趨勢,因此,可以得知現今人們無論在何時何地都可以隨時在網上選購自己想要的商品,這使得物流已成為不可或缺的一塊。
由於網購行為的增加,為了滿足零售業者與消費者的需求,許多企業皆已成立物流中心(Distribution Center ; D.C.)來提升整個物流的績效,而物流中心的各項內部作業中,又以揀貨作業為重要且繁雜的工作,能否在合理時間內完成揀貨作業與物流中心的經營成本和服務水準有直接的關係。目前物流中心大多是屬於勞力密集的產業,其揀貨作業相關人力約占整個物流中心人力的50%以上;揀貨作業時間約占整個物流中心作業時間的30%—40%,故揀貨作業的重要性,足以影響著物流中心的整體營運和作業成本。
為了提升揀貨作業效率,藉以提升整個物流中心的整體營運和作業成本,本研究將利用電腦即時引導揀貨系統即時判斷的特性,針對揀貨人員在進行揀貨作業時,面對下一揀貨點的路徑決策之決策問題進行探討,並提出多種揀貨路徑策略,搭配相關環境因子,應用模擬軟體實驗之結果來分析本研究所提出的揀貨路徑策略,是否能有效提升整的揀貨作業的績效。
摘要(英) In recent years, with the advancement of network technology, people’s consumption patterns have changed from the past to brick-and-mortar store consumption to now they are shopping through e-commerce platforms on the Internet. Nowadays, the popularity of smart phones and mobile networks makes people more convenient to consume online anywhere. In 2020, a survey on the online shopping behavior of Taiwanese netizens found that the proportion of online purchases made by netizens in 2019 has increased significantly from 35.9% in 2018 to 49.6%, there has been a 50% trend of online shopping orders with PCs. Therefore, it can be known that people can buy the goods they want online at anytime and anywhere, which makes logistics more important.
Due to the increase in online shopping behaviors, in order to meet the needs of retailers and consumers, many companies have set up distribution centers to improve the performance of the entire logistics, and the various internal operations of the logistics center are based on picking goods. Operation is an important and complicated task. Whether the picking operation can be completed in a reasonable time is directly related to the operating cost and service level of the logistics center. At present, most logistics centers are labor-intensive industries. The manpower related to picking operations accounts for more than 50% of the manpower of the entire logistics center; the picking operation time accounts for about 30%-40% of the entire logistics center operation time, so picking operations The importance of it is enough to affect the overall operation and operating costs of the logistics center.
In order to improve the efficiency of picking operations and to increase the overall operation and operating costs of the entire distribution center, this study will use the computer to guide the picking system to determine the characteristics of the picking system in real time. The decision-making problem of the route decision of the goods point is discussed, and a variety of picking route strategies are proposed, combined with relevant environmental factors, and the results of simulation software experiments are used to analyze whether the picking route strategy proposed by this research can effectively improve the overall picking The performance of the assignment.
關鍵字(中) ★ 物流中心
★ 揀貨路徑策略
★ 電腦即時引導揀貨系統
關鍵字(英) ★ Distribution Center
★ Computer Real-time Guided Picking system
★ Picking route
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 研究目的 6
1.4 研究環境與假設 6
1.5 研究架構 9
第二章 文獻探討 12
2.1 物流 13
2.1.1 物流的定義 13
2.1.2 物流中心 13
2.2 倉儲管理 18
2.2.1 倉儲規劃(Warehousing) 18
2.2.2 走道設計(Aisle Design) 19
2.3 揀貨作業 20
2.3.1 揀貨策略 20
2.3.2 揀貨路徑 23
2.3.3 揀貨輔助系統 26
2.4 語音揀貨 27
2.4.1 語音揀貨的介紹 27
2.4.2 語音揀貨的起源 27
2.4.3 語音揀貨的效益 28
2.5 視覺揀貨 29
2.5.1 視覺揀貨的介紹 29
2.5.2 視覺揀貨的起源 29
2.5.3 第二代Google Glass企業版 30
2.5.4 擴增實境(Augmented Reality) 31
2.5.5 視覺揀貨的效益 32
第三章 研究方法 36
3.1 方法架構 36
3.2 研究問題說明 36
3.3 揀貨路徑策略 37
3.3.1 「固定揀貨路徑」策略 37
3.3.2 「按原順序尋找空閒揀貨點」策略 38
3.3.3 「距離原規劃揀貨點最近」策略 41
3.3.4 「距離揀貨人員目前位置最近」策略 44
3.3.5 「距離原規劃揀貨點及揀貨人員目前位置總和最近」策略 47
3.3.6 「重新規劃最佳揀貨路徑」策略 50
3.3.7 「按原順序尋找空閒揀貨點 + 考量最早可揀貨時間」策略 53
3.3.8 「距離原規劃揀貨點最近 + 考量最早可揀貨時間」策略 55
3.3.9 「距離揀貨人員目前位置最近 + 考量最早可揀貨時間」策略 56
3.3.10 「距離原規劃揀貨點及揀貨人員目前位置總和最近 + 考量最早可揀貨時間」策略 57
3.3.11 「重新規劃最佳揀貨路徑 + 考量最早可揀貨時間」策略 59
第四章 模擬實驗與分析 61
4.1 前言 61
4.2 模擬實驗 61
4.2.1 揀貨環境設定 61
4.2.2 實驗訂單假設 63
4.2.3 儲位擺放比例設計 63
4.2.4 儲位擺放設計 65
4.2.5 實驗因子組合 71
「距離原規劃揀貨點及揀貨人員目前位置總和最近 + 考量最早可揀貨時間」策略 71
「重新規劃最佳揀貨路徑 + 考量最早可揀貨時間」策略 71
4.3 績效評估準則 72
4.4 統計分析 73
4.4.1 依「系統總執行時間(TST)」為績效評估值 73
4.4.2 依「總行走距離(TTD)」為績效評估值 83
4.4.3 依「總揀貨時間(TPT)」為績效評估值 92
第五章 結論與建議 102
5.1 研究結論 102
5.2 後續研究與建議 102
參考文獻 104
參考文獻 中文文獻
1. 林立千(2001),「設施規劃與物流中心設計」,智勝文化出版社,初版。
2. 顏憶茹、張淳智(2001),「物流管理:原理、方法與實例」,前程企管,台北,三版。
3. 經濟部商業司(2001),2001中華民國物流年鑑,經濟部商業司。
4. 陳暉江(2004),針對兩條以上橫向走道之物流中心進行揀貨路徑規劃研究,國立中央大學工業管理研究所碩士發表之論文,桃園市。。
5. 張福榮(2005),「物流管理」,五南,二版。
6. 劉忠政(2007),播種式揀貨系統之規劃,國立中央大學工業管理研究所碩士發表之論文,桃園市。
7. 李海臣(2010),物流規劃與設計的布局問題研究。
8. 趙廷偉(2012),具語音引導揀貨系統之揀貨作業的執行與績效,國立中央大學工業管理研究所碩士發表之論文,桃園市。
9. 資策會(2018),台灣網購消費者調查分析-整體族群行為,MIC產業情報研究所。
10. 資策會(2020),【網購大調查系列一】行動下單急追PC呈五五波,行動商務正式成為主流,MIC產業情報研究所。




英文文獻
1. AGCO (2015). Augmented Reality on AGCO’s factory floor. Retrieved December 5, 2020, from http://blog.agcocorp.com/2017/05/google-glass-placeholder/
2. Alyahya, S., Wang, Q., & Bennett, N. (2016). Application and integration of an RFID-enabled warehousing management system – a feasibility study. Journal of Industrial Information Integration. PII:S2452-414X(16)30026-7. DOI:10.1016/j.jii.2016.08.001. Reference: JII 16.
3. Andriolo, A., Battini, D., Calzavara, M., Gamberi, M., Peretti, U., Persona, A., ... & Sgarbossa, F. (2016). New RFID pick-to-light system: Operating characteristics and future potential. International Journal of RF Technologies, 7(1), 43-63.
4. Aristides, M. (2011). Warehouse Technologies in Retail Operations: the case of Voice‐Picking, in Intelligent Agrifood Chains and Networks, Wiley‐Blackwell,Oxford, UK. doi: 10.1002/9781444339895.ch12, pp.195-207.
5. Augmedix(2017). Augmedix Story : Sutter Health. Retrieved December 5, 2020, from https://www.youtube.com/watch?v=hejHavu6jkY&list=PLmpyhGQd02_157vDAKiL3NI0qIRGwLGS8&index=2
6. Baechler, A., Baechler, L., Autenrieth, S., Kurtz, P., Hoerz, T., Heidenreich, T., & Kruell, G. (2016). A comparative study of an assistance system for manual order picking--called pick-by-projection--with the guiding systems pick-by-paper, pick-by-light and pick-by-display. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 523-531). IEEE.
7. Baumann, H., Starner, T., Iben, H., Lewandowski, A., & Zschaler, P. (2011). Evaluation of graphical user-interfaces for order picking using head-mounted displays. In Proceedings of the 13th international conference on multimodal interfaces (pp. 377-384).
8. Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). A comparative analysis of different paperless picking systems. Industrial Management & Data Systems.
9. Benko, B., Wilson, A., & Zannier, F. (2014). Dyadic Projected Spatial Augmented Reality.
10. Berger, S. M., & Ludwig, T. D. (2007). Reducing warehouse employee errors using voice-assisted technology that provided immediate feedback. Journal of Organizational Behavior Management, 27(1), 1-31.
11. Billingsley, J., & Connolly, C. (2008). Warehouse management technologies. Sensor Review.
12. Bolaños Zuñiga, J., Saucedo Martínez, J. A., Salais Fierro, T. E., & Marmolejo Saucedo, J. A. (2020). Optimization of the Storage Location Assignment and the Picker-Routing Problem by Using Mathematical Programming. Applied Sciences, 10(2), 534.
13. Bolten, E. F. (1997). Managing time and space in the modern warehouse: With ready-to-use forms, checklist & documentation. Amacom Books.
14. Bonn (2015). DHL successfully tests Augmented Reality application in warehouse. Retrieved December 5, 2020, from
https://www.dhl.com/en/press/releases/releases_2015/logistics/dh1_successfully_tests_augmented_reality_application_in_warehouse.html
15. Cano, J. A., Correa-Espinal, A. A., & Gómez-Montoya, R. A. (2017). An evaluation of picking routing policies to improve warehouse efficiency. International Journal of Industrial Engineering and Management, 8(4), 229-238.
16. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimed Tools Appl (2011) 51:341–377 DOI 10.1007/s11042-010-0660-6.
17. Cecere, L. (2013). The Power of Voice. Supply Chain Insights LLC.
18. Celik, M., & Sural, H. (2014). Order picking under random and turnover-based storage policies in fishbone aisle warehouses.IIE Transactions (2014) 46, 283–300 Copyright C “IIE” ISSN: 0740-817X print / 1545-8830 online.
19. Chen, C. M., Gong, Y., De Koster, R. B., & Van Nunen, J. A. (2010). A flexible evaluative framework for order picking systems. Production and Operations Management, 19(1), 70-82.
20. Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
21. Cheng, C. Y., Chen, Y. Y., Chen, T. L., & Yoo, J. J. W. (2015). Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem. International Journal of Production Economics, 170, 805-814.
22. Chiang C. (2001). Order splitting under periodic review inventory systems. Int. J. Production Economics 70(2001)67-76.
23. Choya, K.L., Shengb, N., Lama, H.Y., Laic, I.K.W., Chowb, K.H. & Hoa. G.T.S. (2014). Assess the effects of different operations policies on warehousing reliability. International Journal of Production Research, 2014 Vol. 52, No. 3, 662–678.
24. Culter, T. R. (2011).Voice-Picking Technology Helps Improve Quality in Order
Fullfillment. Retrieved December 2, 2020, from https://www.qualitydigest.com/inside/quality-insider-article/voice-picking-technology-helps-improve-quality-order-fulfillment
25. Dallari, F., Marchet, G., & Melacini, M. (2009). Design of order picking system. The international journal of advanced manufacturing technology, 42(1-2), 1-12.
26. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
27. De Vries, J., de Koster, R., & Stam, D. (2016). Exploring the role of picker personality in predicting picking performance with pick by voice, pick to light and RF-terminal picking. International Journal of Production Research, 54(8), 2260-2274.
28. Dujmešić, N., Bajor, I., & Rožić, T. (2018). Warehouse processes improvement by pick by voice technology. Tehnički vjesnik, 25(4), 1227-1233.
29. Dukic, G., & Oluic, C. (2007). Order-picking methods: improving order-picking efficiency. International Journal of Logistics Systems and Management, 3(4), 451-460.
30. Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial Engineering, 111, 537-551.
31. ESCAP, U. (2002). Commercial development of regional ports as logistics centres. Transport and Tourism Division (TTD), ST/ESCAP/2194, United Nations Publication, Thailand.
32. Forde, M. (2019). DHL expands‘vision picking’with next-gen Google Glass. Retrieved November 15, 2020, from https://www.retaildive.com/news/dhl-vision-picking-program-google-glass-wearables/555672/
33. Frazelle (2002). Supply chain strategy : the logistics of supply chain management.
34. Funk, M., Shirazi, A. S., Mayer, S., Lischke, L., & Schmidt, A. (2015). Pick from Here! - An Interactive Mobile Cart using In-Situ Projection for Order Picking. UBICOMP ′15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN.
35. Gialos, A., & Zeimpekis, V. (2020). Vision picking technology: defining design parameters via a systematic literature review. International Journal of Logistics Systems and Management, 37(1), 106-139.
36. Google AR & VR(2019). Glass Enterprise Edition 2: A hands-free device for smarter and faster hands-on work.
https://www.youtube.com/watch?v=5IK-zU51MU4&feature=youtu.be
37. Grosse, E. H., & Glock, C. H. (2015). The effect of worker learning on manual order picking processes. International Journal of Production Economics, 170, 882-890.
38. Groose, E. H., Glock, C. H., & Neumann, P. W. (2015). Human Factors in Order Picking System Design: A Content Analysis. IFAC-PapersOnLine.
39. Grubert, J., Hamacher, D., Mecke, R., Böckelmann, I., Schega, L., Huckauf, A., ... & Tümler, J. (2010). Extended investigations of user-related issues in mobile industrial AR. In 2010 IEEE International Symposium on Mixed and Augmented Reality (pp. 229-230). IEEE.
40. Gue, K. R., & Meller, R. D. (2009). Aisle configurations for unit-load warehouses. ISSN: 0740-817X print / 1545-8830 online DOI: 10.1080/07408170802112726.
41. Guenzi, R. D., & Feie, M. S. (2003). U.S. Patent No. 6,626,632. Washington, DC: U.S. Patent and Trademark Office.
42. Guo, A., Raghu, S., Xie, X., Ismail, S., Luo, X., Simoneau, J., Gilliland, S., Baumann, H., Southern, C., & Starner, T. (2014). A Comparison of Order Picking Assisted by Head-Up Display (HUD), Cart-Mounted Display (CMD), Light, and Paper Pick List. ISWC ′14, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA.
43. Hua, X., Hu, X., & Yuan, W. (2016). Research optimization on logistics distribution center location based on adaptive particle swarm algorithm. Optik, 127(20), 8443-8450.
44. Henn, S., Koch, S., Doerner, K. F., Strauss, C., & Wäscher, G. (2010). Metaheuristics for the order batching problem in manual order picking systems. Business Research, 3(1), 82-105.
45. Herter, J. (2014). Augmented Reality supported Order Picking using Projected User Interfaces.Bachelor Thesis Nr. 131.
46. Ho, Y. C., & Chien, S. P. (2006). A comparison of two zone-visitation sequencing strategies in a distribution centre. Computers & Industrial Engineering,50(4), 426-439.
47. Ho, Y.C., & Lin, J.W. (2017). Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Computers & Industrial Engineering, 113, 241-255.
48. Ho, Y.C., S, T.S., & Shi, Z.B. (2007). Order-batching methods for an order-picking warehouse with two cross aisles. Computers & Industrial Engineering 55 (2008) 321–347.
49. Ho, Y. C., & Tseng, Y. Y. (2006). A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. International Journal of Production Research, 44(17), 3391-3417.
50. Hong, S., Johnson, A. L., & Peters, B. A. (2012). Batch picking in narrow-aisle order picking systems with consideration for picker blocking. European Journal of Operational Research, 221(3), 557-570.
51. Hsieh, L.F., Huang, Y.C. (2011). New batch construction heuristics to optimise the performance of order picking systems. Int. J. Production Economics 131 (2011) 618–630.
52. Hu, W., Hou, Y., Tian, L., & Li, Y. (2015). Selection of logistics distribution center location for SDN enterprises. Journal of Management Analytics, 2(3), 202-215.
53. Hwang, H., & KIM, D.G. (2005). Order-batching heuristics based on cluster analysis in a low-level picker-to-part warehousing system. International Journal of Production Research, Vol. 43, No. 17, 1 September 2005, 3657–3670.
54. Hwang, H., Oh, Y. H., and Lee, Y.K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to –part system. International Journal of Production Research, vol. 42, no. 18, pp.3873-3889.
55. Hwang, H., & Lee, M. K. (1988). Order batching algorithms for a man-on-board automated storage and retrieval system. Engineering Costs and Production Economics, 13(4), 285-294.
56. Iben, H., Ruthenbeck, C., & Klug, T. (2009). Visual Based Picking Supported by Context Awareness Comparing Picking Performance Using Paper-based Lists Versus List Presented on a Head Mounted Display with Contextual Support.
57. Kim, S., Nussbaum, M. A., & Gabbard, J. L. (2019). Influences of augmented reality head-worn display type and user interface design on performance and usability in simulated warehouse order picking. Applied ergonomics, 74, 186-193.
58. Konur, D., Campbell, J.F., & Monfared, S.A. (2017). Economic and Environmental Considerations in A Stochastic Inventory Control Model with Order Splitting under Different Delivery Schedules Among Suppliers.
59. Koo, P. H. (2009). The use of bucket brigades in zone order picking systems. OR spectrum, 31(4), 759-774.
60. Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking : A literature review. European Journal of Operational Research 182 (2007) pp.481–501.
61. Kothari, J. (2019). Glass Enterprise Edition 2: faster and more helpful. Retrieved May 20, 2019, from http:https://blog.google/products/devices-services/glass-enterprise-edition-2/
62. Le-Duc, T., & De Koster, R. M. B. (2005). Travel distance estimation and storage zone optimization in a 2-block class-based storage strategy warehouse. International Journal of Production Research, 43(17), 3561-3581.
63. Li, Y. D., Lu, J. S., & Pan, G. Q. (2012). Slotting optimization based on SKUs correlations with Serpentine routing policy. Journal of ZheJiang University (Engineering Science), 46(8), 1424-1430.
64. Liang, C., Chee, K. J., Zou, Y., Zhu, H., Causo, A., Vidas, S., & Cheah, C. C. (2015). Automated robot picking system for e-commerce fulfillment warehouse application. In The 14th IFToMM World Congress.
65. Lu, C. S., & Yang, C. C. (2006). Evaluating key logistics capabilities for international distribution center operators in Taiwan. Transportation Journal, 9-27.
66. Lu, C. S., & Yang, C. C. (2010). Logistics service capabilities and firm performance of international distribution center operators. The Service industries journal, 30(2), 281-298.
67. Lummus, R. R., Krumwiede, D. W., & Vokurka, R. J. (2001). The relationship of logistics to supply chain management: developing a common industry definition. Industrial management & data systems.
68. Manzini, R., Gamberi, M., and Regattieri, A. (2005). Design and control of a flexible order-picking system (FOPS): A new integrated approach to the implementation of an expert system,” Journal of Manufacturing Technology Management, vol. 16, no. 1, pp. 18-35.
69. Meidute, I. (2005). Comparative analysis of the definitions of logistics centres. Transport, 20(3), 106-110.
70. Melacini, M., Perotti, S., & Tumino, A. (2011). Development of a framework for pick-and-pass order picking system design. The International Journal of Advanced Manufacturing Technology, 53(9-12), 841-854.
71. Miller, A., & Tompkins, P. (2004). Order Picking for the 21st Century: Voice vs. Scan Technology by Aaron Miller, Principal Tompkins Associates.
72. ¨ Ozt¨urko˘glu, O. & Hoser, D. (2019). A Discrete Cross Aisle Design Model for Order-Picking Warehouses.
73. Pan, J. C. H., & Wu, M. H. (2009). A study of storage assignment problem for an order picking line in a pick-and-pass warehousing system. Computers & Industrial Engineering 57 (2009) 261–268.
74. Pandian, A.P. (2019). ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS.Journal of Artificial Intelligence and Capsule Networks (2019) Vol.01/ Issue.02 Pages: 63-72 http://irojournals.com/aicn/ DOI: https://doi.org/10.36548/jaicn.2019.2.002.
75. Peker, I., Baki, B., Tanyas, M., & Murat Ar, I. (2016). Logistics center site selection by ANP/BOCR analysis: A case study of Turkey. Journal of Intelligent & Fuzzy Systems, 30(4), 2383-2396.
76. Petersen, C. G. (2002). Consideration in order picking zoneconfiguration, International Journal of Operations & Production Management, vol. 22, no. 7,pp. 793-805.
77. Petersen, C. G. (1997). An evaluation of order picking routing policies, International Journal of Operations & Production Management, vol. 17, no. 11,pp. 1098-1111.
78. Pham, T. Y., Ma, H. M., & Yeo, G. T. (2017). Application of Fuzzy Delphi TOPSIS to locate logistics centers in Vietnam: The Logisticians’ perspective. The Asian Journal of Shipping and Logistics, 33(4), 211-219.
79. Pickl, S. (2014). Augmented reality for order picking using wearable computers with head-mounted displays (Bachelor′s thesis).
80. Pratiwi, N. K. U., Monica, S., Yandri, R., & Himawan, D. (2020). THE USE OF VOICE TECHNOLOGY TO ENHANCE THE PICKING ACTIVITY IN WAREHOUS. Advances in Transportation and Logistics Research, 3, 691-694.
81. Ratliff, H. D., and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem, Operations Research, vol. 31, no. 3, pp. 507-521.
82. Reif, R., & Günthner, W. A. (2009). Pick-by-Vision : An Augmented Reality supported Picking System.
83. Reitmayr, G., & Schmalstieg, D. (2003). Location based Applications for Mobile Augmented Reality.Vienna University of Technology Favoritenstr. 9-11/188/2, A1040 Vienna, Austria Email: reitmayr|schmalstieg}@ims.tuwien.ac.at.
84. Rimienė, K., & Grundey, D. (2007). Logistics centre concept through evolution and definition. Engineering economics, 54(4).
85. Scholz, A., & Wäscher, G. (2017). Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing. Central European Journal of Operations Research, 25(2), 491-520.
86. Schrotenboer, A. H., Wruck, S., Roodbergen, K. J., Veenstra, M., & Dijkstra, A. S. (2017). Order picker routing with product returns and interaction delays. International Journal of Production Research,55(21), 6394-6406.
87. Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
88. Schwerdtfeger, B., Reif, R., Gunthner, W., Klinker, G., Hamacher, D., Schega, L., Bockelmann, I., Doil, F., & Tumler, J. (2009). Pick-by-Vision: A First Stress Test.
89. Shiau, J.Y., & Lee, M.C. (2017). A warehouse management system with sequential picking for multi-container deliveries. Computers & Industrial Engineering, 58(3), 382-392.
90. Smith Optics (2019). Glass Enterprise Edition 2:faster and more helpful. Retrieved December 5, 2020, from https://blog.google/products/devices-services/glass-enterprise-edition-2/
91. Valle, C. A., Beasley, J. E., & da Cunha, A. S. (2017). Optimally solving the joint order batching and picker routing problem. European Journal of Operational Research, 262(3), 817-834.
92. Van Gils, T., Ramaekers, K., Caris, A., & de Koster, R. B. (2018). Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1), 1-15.
93. Van Gils, T., Braekers, K., Ramaekers, K., Depaire, B., & Caris, A. (2016). Improving order picking efficiency by analyzing combinations of storage, batching, zoning, and routing policies. In International Conference on Computational Logistics (pp. 427-442). Springer, Cham.
94. Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., & de Koster, R. B. (2019). Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems. Transportation Research Part E: Logistics and Transportation Review, 125, 47-73.
95. Vidovič, E., & Gajšek, B. (2020). Analysing picking errors in vision picking system. Logistics & Sustainable Transport Vol. 11, No. 1, February 2020, 90-100 doi: 10.2478/jlst-2020-0006.
96. Vocollect (2019). Vocollect SRX2 Bluetooth Wireless Headset. Retrieved December 17, 2020, from
https://www.honeywellaidc.com/en-au/products/workflow-solutions/vocollect-voice-headsets/srx2
97. Wagner, D., & Schmalstieg, D. (2006). Handheld Augmented Reality Displays. IEEE VR 2006 Workshop on Emerging Display Technologies.
98. Weaver, K. A., Baumann, H., Starner, T., Iben, H., & Lawo, M. (2010). An empirical task analysis of warehouse order picking using head-mounted displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1695-1704).
99. Wong, E. Y. (2016). Development of mobile voice picking and cargo tracing systems with internet of things in third-party logistics warehouse operations. International Journal of Management and Sustainability, 5(4), 23-29.
100. Yu, M., & De Koster, R. B. (2009). The impact of order batching and picking area zoning on order picking system performance. European Journal of Operational Research, 198(2), 480-490.
101. Yu, Y., Yu, C., Xu, G., Zhong, R. Y., & Huang, G. Q. (2020). An operation synchronization model for distribution center in E-commerce logistics service. Advanced Engineering Informatics, 43, 101014.
102. Żak, J., & Węgliński, S. (2014). The selection of the logistics center location based on MCDM/A methodology. Transportation Research Procedia, 3, 555-564.
103. Zare Mehrjerdi, Y., Alipour, M., & Mostafaeipour, A. (2018). Integrated order batching and distribution scheduling in a single-block order picking warehouse considering S-shape routing policy. International Journal of Engineering, 31(10), 1723-1733.
104. Zhang, J., Wang, X., Chan, F. T., & Ruan, J. (2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45, 271-284.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2021-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明