博碩士論文 108223051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.141.4.214
姓名 李昱勳(Yu-Hsun Lee)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發擴散式採樣技術以監測空氣中有害 空氣污染物
(Development of Diffusive Sampling Technique for Monitoring of Hazardous Air Pollutants)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 工業區有害空氣污染物(Hazardous Air Pollutants, HAPs)對民眾健康的威脅是近年受關注的議題,行政院環保署2021年2月訂定公布「固定污染源有害空氣污染物排放標準」,優先納管22項有害空氣污染物。為了掌握揮發性有機HAPs較長時間的平均濃度,以評估長時間的暴露健康風險,開發一套類似於美國325A/B之擴散式採樣技術。為了計算樣品濃度,須求取該物質之專屬吸取速率(Uptake Rate)才可定量HAPs,且吸取速率依吸附劑種類與個別目標物質皆有其專屬值,故須個別測定。在樣品分析上採用自動化熱脫附儀搭配氣相層析質譜儀作為分析系統。希望以更簡易的採樣方法長時間監測周界HAPs濃度。
本研究選擇Carbopack X以及Carboxen 569吸附管,為了求取個別物質的吸取速率,建立暴露腔系統以模擬擴散式採樣的環境,首先驗證現行U.S. EPA Method 325B方法中的18項已知HAPs的吸取速率,差異小於11%的結果確認本研究設備與方法之可靠性。再者,利用暴露腔系統求得包含氯乙烯、1,3-丁二烯、丙烯腈等HAPs之吸取速率,補足現有標準方法之不足,強化台灣針對優先管制物的監測技術。
本研究除了建立品質管制方法之外,為了瞭解擴散式採樣性質,經由實驗測試採樣時可能的干擾或影響,探討包括溫度與濕度變化、反擴散採樣現象、物種間競爭吸附的現象等,考量吸附劑選擇性,建議兩吸附管各別適合採集的物種。本研究結果顯示Carbopack X與Carboxen 569共可針對65項HAPs進行擴散式採樣之監測,且無須考量物種之間的競爭吸附干擾。Carbopack X可針對包含1,3-丁二烯等共52項有機HAPs進行擴散式採樣,Carboxen 569則可針對包含氯乙烯等共44項有機HAPs進行擴散式採樣。Carbopack X檢量線相關係數介於0.993至1.000之間。Carboxen 569檢量線相關係數介於0.990至1.000之間。兩者除了二氯甲烷之外皆有小於1 ppbv的方法偵測極限,分別介於0.11 ppbv至0.97 ppbv之間以及0.47 ppbv至1.11 ppbv之間。樣品保存回收率分別介於89%至110%之間以及91%至113%之間。目標物濃度變化之反擴散回收率分別介於93%至115%之間以及介於90%至117%之間。適用於溫度23°C至38°C、相對濕度23%至90%的環境條件,其吸取速率變化量RSD%介於5%至17%之間,Carboxen 569之吸取速率變化量則RSD%介於5%至19%之間。
本研究尚探討時間線性之特性,在較長採集時間下,吸附管中含有較大量的物質時是否影響既有的採集行為,導致失去時間線性,這將可能影響定量結果。然而,現今在標準方法中僅有少數物質有相關的參考值。本研究觀察到Carbopack X採集1,3-丁二烯的吸取速率下降14%,這個結果與ASTM D6196描述採集7天後吸取速率下降12%的結過相似。藉由實驗得知擴散式採樣採集量與吸取速率變化之關係,推估更多物質的適用採集質量範圍,提供更多使用資料以建立完善的擴散式採樣技術。
實驗室評估完成後,本研究於北部某工業區進行一個場次的實地監測,以驗證擴散式採樣技術之實用性,時間為2019年11月12日至11月19日。實場的測試結果與線上熱脫附氣相層析質譜分析方法的平均值相當,擴散式採樣採集苯的結果為0.31 ppbv,與線上熱脫附氣相層析質譜分析方法0.27 ppbv的結果相近,同樣在其他物種有相近的結果,甲苯的結果分別為6.13 ppbv與5.37 ppbv,乙苯的結果分別為0.26 ppbv與0.24 ppbv,間/對二甲苯分別為0.40 ppbv與0.36 ppbv。擴散採樣方法不僅可以輕鬆地部署採樣測點,還可以在相對較長時段內提供周界之目標HAPs平均濃度,提升環境監測實力。
摘要(英) Hazardous Air Pollutants (HAPs) are closely associated with public health issue, which has received much attention in recent years. In 2021, Taiwan EPA announced the Emission Standards for Hazardous Air Pollutants from Stationary Pollution to control 22 HAPs as the first stage. In order to obtain average concentrations over a relative long period of time for these target HAPs, a diffusive sampling technique similar to the U.S. EPA Method 325A/B method was developed. To calculate sample concentrations diffusive uptake rates are required for individual target compounds. For sample analysis a thermal desorption (TD) technique for preconcentration coupled with gas chromatography mass spectrometry (GC-MS) was employed.
In this research, we use both Carbopack X and Carboxen 569 sampling tubes. The uptake rates of the 22 target compounds including 1,3-butadiene and vinyl chloride which are not covered by the U.S. EPA Method 325A/B were determined in this study in a self-built exposure chamber. We found that the uptake rates were in high agreement with those determined by the U.S. EPA Method 325B using Carbopack X based on two repeated results, and the uptake rates were between -4% to 13% for Carbopack X and -13% to 7% for Carboxen 569.
Both types of sorbents were tested for optimized conditions for the 22 HAPs from the perspectives of correlation coefficients (R2) and method detection limits (MDL), as well as other relevant factors in diffusive sampling, such as the effect of humidity, back diffusion, tolerance to high ambient concentration variability, etc. Our results show that Carbopack X can be used to sample 55 HAPs including 1, 3-butadiene, with R2 ranging from 0.993 to 1.000 and MDL ranging from 0.11 to 0.97 ppbv. The relative standard deviations (RSD) in uptake rates are all lower than 20%, between 4% and 17%. The recoveries are between 91% and 116%. On the other hand, Carboxen 569 can detect 44 HAPs including vinyl chloride, with R2 ranging from 0.990 to 1.000 and MDL ranging from 0.47 to 0.95 ppbv. The RSD of uptake rates are between 5% to 19%, and the recoveries are between 87% and 117%.
After completion of laboratory assessment, one-week field measurement was conducted from November 12, 2020 to November 19, 2020. The field measurement of diffusive sampling showed comparable results to TD-GC/MS measurements by averaging hourly data from online TD-GC/MS. For instance, benzene was detected as 0.31 ppbv and 0.27 ppbv for diffusive sampling and on-line method, respectively. Toluene and ethylbenzene were measured as 6.13 ppbv vs. 5.37 ppbv, and 0.26 ppbv vs. 0.24 ppbv, respectively. This diffusive sampling method not only can make sample deployment with ease, but also provide concentration estimates for target HAPs over a relatively long time period of more than 2 weeks.
關鍵字(中) ★ 擴散式採樣
★ 有害空氣污染物
★ 吸附管
★ 揮發性有機化合物
關鍵字(英) ★ Diffusive Sampling
★ Hazardous Air Pollutants
★ Sorbent Tube
★ Volatile Organic Compounds
論文目次 摘要 i
Abstract v
謝誌 vii
目錄 ix
圖目錄 xi
表目錄 xiii
第一章 前言 1
1.1 研究背景 1
1.2 現有VOCs監測技術回顧 11
1.2.1 連續式自動監測方法 14
1.2.2 離線式採樣分析方法 16
1.3 研究動機 23
第二章 擴散式採樣技術介紹 25
2.1 採樣器 25
2.1.1 吸附劑 28
2.1.2 吸取速率 32
2.2 分析儀 40
第三章 實驗與設備 51
3.1 實驗流程 51
3.2 目標物與吸附劑 53
3.3 暴露腔系統與測試 59
3.4 自動控制系統 72
3.5 現地採樣 75
3.5.1 遮罩設計 76
3.5.2 遮罩測試 79
第四章 研究方法與結果討論 81
4.1 HAPs之評估 81
4.1.1. 檢量線 83
4.1.2. 方法偵測極限 87
4.1.3. 實驗吸取速率 91
4.1.4. 可能的干擾 97
4.1.5. 綜合評估 125
4.1.6. 時間線性 140
4.1.7. 小節 153
4.2 其他吸附劑測試 155
4.3 現地採樣 159
第五章 總結與未來展望 163
第六章 參考文獻 167
參考文獻 [1] 行政院環境保護署,揮發性有機物空氣污染管制及排放標,2013。
[2] 陳王琨,台灣與美國實施空氣品質管理計畫的歷史經驗回顧,2001。
[3] U. S. EPA (2016) The original list of hazardous air pollutants.
[4] 蔡俊鴻, 溫麗琪, 李楟貽, 葉惠芬, 姚永真, 張立鵬,都會區有害性空氣污染物之管制策略及效益評估子計畫:工業都會區有機性有害空氣污染物影響暨管制有效性評估研究,2003。
[5] 日本環境省中央環境審議会大氣環境部會,有害大気汚染物質に該当する可能性がある物質リスト及び優先取組物質の見直し並びに有害大気汚染物質のリスクの程度に応じた対策のあり方について。
[6] 日本環境省中央環境審議会大気環境部会有害大気汚染物質モニタリング地点選定ガイドライン。
[7] 行政院環境保護署,廢棄物焚化爐空氣污染物排放標準,2006。
[8] 行政院環境保護署,固定污染源有害空氣污染物排放標準草案總說明,2017。
[9] 行政院環境保護署,固定污染源有害空氣污染物排放標準草案總說明,2019。
[10] 行政院環境保護署,固定污染源有害空氣污染物排放標準總說明,2021。
[11] U. S. EPA (1984) Toxic Organics-1 (TO-1) Method For The Determination Of Volatile Organic Compounds In Ambient Air Using Tenax® Adsorption And Gas Chromatography/Mass Spectrometry (GC/MS).
[12] U. S. EPA (1984) Toxic Organics-2 (TO-2) Method For The Determination Of Volatile Organic Compounds In Ambient Air By Carbon Molecular Sieve Adsorption And Gas Chromatography/Mass Spectrometry (GC/MS).
[13] U. S. EPA (1999) Toxic Organics-17 (TO-17) Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes.
[14] U. S. EPA (1999) Toxic Organics-14A (TO-14A) Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography.
[15] U. S. EPA (1999) Toxic Organics-15 (TO-15) Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS).
[16] U. S. EPA (1999) Toxic Organics-11A (TO-11A) Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC).
[17] 行政院環保署環境檢驗所 (NIEA A710.11C) 空氣中氣態有機溶劑檢驗方法-以活性碳吸附之氣相層析⁄火焰離子化偵測法,1992。
[18] 行政院環保署環境檢驗所 (NIEA A719.11C) 空氣中氣態芳香烴化合物檢驗方法-以活性碳吸附之氣相層析/火焰離子化偵測法,1992。
[19] 行政院環保署環境檢驗所 (NIEA A732.10C) 空氣中總揮發性有機化合物檢測方法-不銹鋼採樣筒/火焰離子化偵測法,2006。
[20] 行政院環保署環境檢驗所 ((NIEA A715.15B) 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法,2014。
[21] 行政院環保署環境檢驗所 (NIEA A505.12B) 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法,2014。
[22] 行政院環保署環境檢驗所 (NIEA A741.10B) 空氣中環氧氯丙烷、乙酸丁酯、丙烯酸乙酯及丙烯酸丁酯等揮發性有機物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法,2015。
[23] 朱晨瑄,碩士論文,以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,國立中央大學,2020。
[24] ASTM (2018) Standard Practice for Choosing Sorbents, Sampling Parameters and Thermal Desorption Analytical Conditions for Monitoring Volatile Organic Chemicals in Air ASTM-D6196.
[25] U. S. EPA (2005) Method 325A-Volatile Organic Compounds from Fugitive and Area Sources: Sampler Deployment and VOC Sample Collection.
[26] U. S. EPA (2005) Method 325B-Volatile Organic Compounds from Fugitive and Area Sources: Sampler Preparation and Analysis.
[27] S. Mukerjee et al. (2016) Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers, Air & Waste Management Association 66, 492-498.
[28] S. Mukerjee et al. (2020) Spatial analysis of volatile organic compounds using passive samplers in the Rubbertown industrial area of Louisville, Kentucky, USA, Atmospheric Pollution Research 11, 81-86.
[29] K. Kume, T. Ohura, T. Amagai, and M. Fusaya (2008) Field monitoring of volatile organic compounds using passive air samplers in an industrial city in Japan, Environmental Pollution 153, 649-657.
[30] R.H. Brown, J. Charlton, and K.J. Saunders (1981) The development of an improved diffusive sampler, American Industrial Hygiene Association 42, 865-869.
[31] William A. McClenny, Karen D. Oliver, Henry H. Jacumin Jr ,E. Hunter Daughtrey Jr, Donald A. Whitaker (2005) 24 h diffusive sampling of toxic VOCs in air onto Carbopack X solid adsorbent followed by thermal desorption/GC/MS analysis-laboratory studies, J. Environmental. Monitoring 7, 248-56.
[32] Theo L. Hafkenscheid and Jacques Mowrer (1996) Lntercomparison of tube-type diffusive sampling for the determination of volatile hydrocarbons in ambient air, Analyst 121, 1249-1252.
[33] Jacques Mowrer, Per Arne Svanberg, Annika Potter, and A. Lindskog (1996) Diffusive monitoring of C6-C9 hydrocarbons in urban air in Sweden, Analyst 131, 1295-1300.
[34] A. Gelencsbr, Gy. Kiss, J. Hlavay, Th.L. Hafkenscheid, R.J.B. Peters, and E. W. B. D. leer (1994) The evaluation of a Tenax GR diffusive sampler for the determination of Benzene and other volatile aromatics indoor air, Talanta 41, 1095-1100.
[35] Xu-Lliang Cao and C.N. Hewitt (1993) Evaluation of tenax-gr adsorbent for the passive sampling of volatile organic compounds at low concentrations, Atmospheric Environment 27, 1865-1872.
[36] E. Gallego, P. Teixidor, F.J. Roca, J.F. Perales, and E. Gadea (2018) Outdoor air 1,3-butadiene monitoring: Comparison of performance of Radiello® passive samplers and active multi-sorbent bed tubes, Atmospheric Environment 182, 9-16.
[37] E. D. Thoma, M.C. Miller, K.C. Chung, N.L. Parsons, and B.C. Shine (2011) Facility fence-line monitoring using passive samplers, Air & Waste Management Association 61, 834-842.
[38] A.P. Eisele et al. (2016) Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers, Air & Waste Management Association 66, 412-9.
[39] S. Mukerjee et al. (2018) Application of passive sorbent tube and canister samplers for volatile organic compounds at refinery fenceline locations in Whiting, Indiana, Air & Waste Management Association 68, 170-175.
[40] L. Vallecillos, A. Maceira, R.M. Marce, and F. Borrull (2018) Evaluation of active sampling strategies for the determination of 1,3-butadiene in air, Atmospheric Environment 176, 21-29.
[41] K.D. Oliver et al. (2017) Sample integrity evaluation and EPA method 325B interlaboratory comparison for select volatile organic compounds collected diffusively on Carbopack X sorbent tubes, Atmospheric Environment 163, 99-106.
[42] C. Walgraeve, K. Demeestere, J. Dewulf, K. Van Huffel, and H. Van Langenhove (2011) Diffusive sampling of 25 volatile organic compounds in indoor air: Uptake rate determination and application in Flemish homes for the elderly, Atmospheric Environment 45, 5828-5836.
[43] Y.H. Kim, P. Kumar, E. E. Kwon, and K.H. Kim (2017) Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde, Microchemical Journal 132, 219-226.
[44] C. Lai et al. (2021) Metal-organic frameworks as burgeoning materials for the capture and sensing of indoor VOCs and radon gases, Coordination Chemistry Reviews 427, 213565.
[45] J. Brown and C.a. B. Shirey A Tool for Selecting an Adsorbent for Thermal Desorption Applications Technical Report.
[46] MARKES (2014) Advice on sorbent selection, tube conditioning, tube storage and air sampling Application Note 005.
[47] E. Woolfenden (2010) Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods, Chromatography A 1217, 2685-94.
[48] D. Helmig (1999) Air analysis by gas chromatography, Chromatography A 843, 129-146.
[49] E. Gallego, F.J. Roca, J.F. Perales, and E. Gadea (2018) Outdoor air 1,3-butadiene monitoring near a petrochemical industry (Tarragona region) and in several Catalan urban areas using active multi-sorbent bed tubes and analysis through TD-GC/MS, Science of the Total Environment 618, 1440-1448.
[50] K. Sakurai, Y. Miyake, and T. Amagai (2013) Reliable passive-sampling method for determining outdoor 1,3-butadiene concentrations in air, Atmospheric Environment 80, 198-203.
[51] N.A. Martin et al. (2005) Measurements of environmental 1,3-butadiene with pumped and diffusive samplers using the sorbent Carbopack X, Atmospheric Environment 39, 1069-1077.
[52] 蘇源昌,博士論文,內部標準在氣相層析質譜儀分析揮發性有機物的效能探討,化學學系,國立中央大學,2006。
[53] V.M. Brown, D.R. Crump, D. Gardiner, and C.W.F. Yu (1993) Long term diffusive sampling of volatile organic compounds in indoor air, Environmental Technology 14, 771-777.
[54] N.A. Martin, D.J. Marlow, M.H. Henderson, B.A. Goody, and P.G. Quincey (2003) Studies using the sorbent Carbopack X for measuring environmental benzene with Perkin–Elmer-type pumped and diffusive samplers, Atmospheric Environment 37, 871-879.
[55] T.D. Ramos, M. de la Guardia, A. Pastor, and F.A. Esteve-Turrillas (2018) Assessment of air passive sampling uptakes for volatile organic compounds using VERAM devices, Science of the Total Environment 619-620, 1014-1021.
[56] ISO (2003) (16017-2:2003) Indoor, ambient and workplace air-Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography-Part2: Diffusive sampling.
[57] L. Vallecillos, E. Espallargas, R. Allo, R.M. Marcé, and F. Borrull (2019) Passive sampling of volatile organic compounds in industrial atmospheres: Uptake rate determinations and application, Science of the Total Environment 666, 235-244.
[58] M.E. Bartkow, K. Booij, K.E. Kennedy, J.F. Muller, and D.W. Hawker (2005) Passive air sampling theory for semivolatile organic compounds, Chemosphere 60, 170-176.
[59] 尤俊輝,碩士論文,甲醛擴散式採樣器之研究,職業醫學與工業衛生研究所。國立臺灣大學,1994。
[60] 行政院環保署環境檢驗所 (NIEA A723.74B) 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法,2020。
[61] 行政院環境保護署 (NIEA PA103) 環境檢驗檢量線製備及查核指引,2005。
[62] 行政院環境保護署 (NIEA PA107) 環境檢驗方法偵測極限測定指引,2005。
[63] Y.M. Kim, S. Harrad, and R.M. Harrison (1999) An Improved Method for the Determination of 1,3-Butadiene in Nonoccupational Environments, Environmental Science & Technology 33, 4342-4345.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明