博碩士論文 108223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.119.157.224
姓名 黃映綾(Ying-Ling Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 阻燃黏著劑與陶瓷塗層隔離膜 應用於鋰離子電池之研究
(Application of Flame Retardant Binder and Ceramic Coated Separator in Lithium ion Batteries)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隔離膜是鋰離子電池中的重要組成之一,目前的商用隔離膜為聚烯烴材料,但是在高溫下會融化收縮,具有安全風險,加上此材料為疏水性,與電解液的親和力較差,在電池性能與安全性方面需要進行改善。
本研究使用浸塗法讓氧化鋁包覆於聚乙烯(PE)隔離膜的表面,增加熱穩定性與親水性。再藉由AM 及 BM 共聚形成枝狀寡聚物oAB作為具有阻燃性質的黏著劑,來改善陶瓷塗層的結構,於陶瓷材料的高熱穩定性基礎上,進一步提高阻燃效果與電池性能。
研究中則使用熱聚合方法和光聚合方法,製備出不同結構的oAB產物,並以不同比例作陶瓷塗層隔離膜黏著劑,探討應用在鋰離子電池的影響。在燃燒測試結果中,兩種oAB都可以延長燃燒時間,達到阻燃效果。在電池性能上兩種oAB呈現不同的表現。熱聚合oAB做為良好的黏著劑,可以改善陶瓷塗層結構,同時擔任添加劑的角色,形成穩定的固體電解質介面,達到更好的循環壽命表現:在0.5C速率500圈充放電循環的條件下,與不添加黏著劑的氧化鋁塗層隔離膜相比,電容保持率從62.7%提升到79.6%。光聚合oAB則是具有比熱聚合oAB更加緻密的結構,能改善寡聚物阻擋離子傳輸通道的情形,提升電容表現:在0.5C的充放電速率下,與添加熱聚合oAB的氧化鋁塗層隔離膜相比,第一圈循環的電容值從80.5 mAh/g提升到96.6 mAh/g。
摘要(英) A separator plays an important role in ensuring the safety in lithium-ion batteries. However, commercial separators are mainly based on polyolefin membranes, which possess serious safety risks, such as their thermal stabilities. In addition, this material is hydrophobic and has poor affinity with electrolyte.
In this study, we use aluminum oxide to coat on the surface of the polyethylene(PE) separator to increase hydrophilicity and the dimensional stability at high temperatures by dip-coating method. The binder is based on a hyberbranched polymer oAB, which is composed of AM copolymerized with BM. The main purpose is to improve the flame-retardant effect and the battery performance on the basis of the high thermal stability of the ceramic material.
We use different methods to prepare oAB. In the combustion test results, both types of oAB can achieve the flame-retardant effect. However, there are different performances in electrochemical performance. Thermal polymerized oAB (termed as oAB-T) can act as both binder and additive, which exhibits an improved ceramic structure and participates in the formation reaction of the solid electrolyte interface to achieve better cycle performance. The capacitance retention of oAB-T 0% ceramic separator and oAB-T 2.4% ceramic separator are respectively 62.7% and 79.6% at 0.5C after 500 cycles.
Photopolymerizable oAB (termed as oAB-P) has a denser structure, which occupies a smaller volume between the ceramic particle, making it easier for lithium ions to transport in the battery. The battery has the best capacitance performance in the early stage of use. With the addition of oAB-T 2.4% and oAB-P 2.2%, the battery capacity of the first cycle increased from 80.5 (mAh/g) to 96.6 (mAh/g) at 0.5C.
關鍵字(中) ★ 鋰離子電池
★ 阻燃劑
★ 陶瓷塗層隔離膜
★ 黏著劑
★ 寡聚物
★ 光聚合
關鍵字(英) ★ Lithium ion Batteries
★ Fire-retardant
★ Ceramic coating separator
★ Binder
★ Oligomer
★ Photopolymerization
論文目次 第一章 緒論 1
1-1 研究背景 1
1-2 安全性問題 2
1-3 電池性能問題 3
1-4 研究動機 4
第二章 文獻回顧 6
2-1 鋰離子電池的原理與介紹 6
2-2 陶瓷塗層隔離膜 10
2-3 添加劑 12
2-3-1 提升安全性之添加劑 13
2-3-2 提升電池性能之添加劑 15
2-3-3 聚合型添加劑 16
2-4 自由基光聚合反應 17
第三章 實驗及原理技術 20
3-1 實驗藥品、器材與儀器設備 20
3-1-1 實驗藥品 20
3-1-2 實驗器材 21
3-1-3 實驗儀器設備 22
3-2 實驗方法 22
3-2-1 熱聚合阻燃黏著劑oAB-T之製備 23
3-2-2 光聚合阻燃黏著劑oAB-P之製備 23
3-2-3 陶瓷塗層隔離膜之製備 24
3-2-4 正極極片製作 25
3-2-5 鈕扣型電池組裝 25
第四章 結果與討論 27
4-1 阻燃隔離膜材料之合成鑑定 27
4-1-1 熱聚合反應探討-1H NMR spectra 27
4-1-2 材料官能基解析-FT-IR 29
4-1-3 光聚合修飾材料比重-TGA 30
4-2 阻燃劑與陶瓷塗層隔離膜之性能探討 31
4-2-1 熱穩定性分析-TGA 31
4-2-2 熱穩定性分析-熱收縮測試 33
4-2-3 熱穩定性分析-阻燃性測試 34
4-2-4 表面型態分析-顯微鏡影像 35
4-2-5 表面型態分析-SEM與TEM 37
4-2-6 隔離膜之潤濕性測試 39
4-2-7 阻燃黏著劑在電解液中的溶解情形 39
4-3 熱聚合黏著劑於半電池中的電性表現 40
4-3-1 交流阻抗測試 40
4-3-2 不同C-rate下電池性能分析 44
4-3-3 電池壽命測試 45
4-4 光聚合黏著劑於半電池中的電性表現 46
4-4-1 交流阻抗測試 46
4-4-2 不同C-rate下電池性能分析 49
4-4-3 電池壽命測試 49
4-5 比較不同阻燃黏著劑對電池的影響 50
4-5-1 電池性能──交流阻抗測試 51
4-5-2 電池性能──不同C-rate下電池性能分析 53
4-5-3 電池性能──電池壽命測試 54
4-5-4 鈍化層之鑑定與探討──SEM與EDS 56
第五章 結論與未來展望 57
參考文獻 58
參考文獻 [1] D. Di Lecce, R. Verrelli, and J. Hassoun, “Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations,” Green chemistry, vol. 19, no. 15, pp. 3442-3467, 2017.
[2] X. Lin, M. Salari, L. M. R. Arava et al., “High temperature electrical energy storage: advances, challenges, and frontiers,” Chemical Society Reviews, vol. 45, no. 21, pp. 5848-5887, 2016.
[3] J. B. Goodenough, “Electrochemical energy storage in a sustainable modern society,” Energy & Environmental Science, vol. 7, no. 1, pp. 14-18, 2014.
[4] J.-M. Tarascon, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 171-179, 2011.
[5] D. H. Doughty, and E. P. Roth, “A general discussion of Li ion battery safety,” The Electrochemical Society Interface, vol. 21, no. 2, pp. 37, 2012.
[6] Q. Wang, P. Ping, X. Zhao et al., “Thermal runaway caused fire and explosion of lithium ion battery,” Journal of power sources, vol. 208, pp. 210-224, 2012.
[7] P. Sun, R. Bisschop, H. Niu et al., “A review of battery fires in electric vehicles,” Fire technology, pp. 1-50, 2020.
[8] J. Wen, Y. Yu, and C. Chen, “A review on lithium-ion batteries safety issues: existing problems and possible solutions,” Materials express, vol. 2, no. 3, pp. 197-212, 2012.
[9] D. H. Doughty, Vehicle battery safety roadmap guidance, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2012.
[10] F. Larsson, Lithium-ion battery safety-Assessment by abuse testing, fluoride gas emissions and fire propagation: Chalmers University of Technology, 2017.
[11] S. Popescu, T. Zhou, R. Nelson et al., “Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data,” Remote Sensing of Environment, vol. 208, pp. 154-170, 2018.
[12] S. F. Schuster, T. Bach, E. Fleder et al., “Nonlinear aging characteristics of lithium-ion cells under different operational conditions,” Journal of Energy Storage, vol. 1, pp. 44-53, 2015.
[13] X.-G. Yang, Y. Leng, G. Zhang et al., “Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging,” Journal of Power Sources, vol. 360, pp. 28-40, 2017.
[14] X. Han, L. Lu, Y. Zheng et al., “A review on the key issues of the lithium ion battery degradation among the whole life cycle,” ETransportation, vol. 1, pp. 100005, 2019.
[15] Z. Li, J. Huang, B. Y. Liaw et al., “A review of lithium deposition in lithium-ion and lithium metal secondary batteries,” Journal of power sources, vol. 254, pp. 168-182, 2014.
[16] W. H. Woodford, Y.-M. Chiang, and W. C. Carter, ““Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis,” Journal of the Electrochemical Society, vol. 157, no. 10, pp. A1052, 2010.
[17] Y. Zhang, and C.-Y. Wang, “Cycle-life characterization of automotive lithium-ion batteries with LiNiO2 cathode,” Journal of the Electrochemical Society, vol. 156, no. 7, pp. A527, 2009.
[18] M. Ecker, N. Nieto, S. Käbitz et al., “Calendar and cycle life study of Li (NiMnCo) O2-based 18650 lithium-ion batteries,” Journal of Power Sources, vol. 248, pp. 839-851, 2014.
[19] J. Wang, J. Purewal, P. Liu et al., “Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide+ spinel manganese oxide positives: Part 1, aging mechanisms and life estimation,” Journal of Power Sources, vol. 269, pp. 937-948, 2014.
[20] B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical energy storage for the grid: a battery of choices,” Science, vol. 334, no. 6058, pp. 928-935, 2011.
[21] T. Ohzuku, and R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries,” Journal of Power Sources, vol. 174, no. 2, pp. 449-456, 2007.
[22] G. Amatucci, J. Tarascon, and L. Klein, “Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries,” Solid State Ionics, vol. 83, no. 1-2, pp. 167-173, 1996.
[23] B. Xu, D. Qian, Z. Wang et al., “Recent progress in cathode materials research for advanced lithium ion batteries,” Materials Science and Engineering: R: Reports, vol. 73, no. 5-6, pp. 51-65, 2012.
[24] P. P. Prosini, Iron phosphate materials as cathodes for lithium batteries: the use of environmentally friendly iron in lithium batteries: Springer Science & Business Media, 2011.
[25] J. Li, Z. Zhang, X. Guo et al., “The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0< x≤ 1) as a cathode material in lithium ion batteries,” Solid State Ionics, vol. 177, no. 17-18, pp. 1509-1516, 2006.
[26] Y. Liang, X. Han, X. Zhou et al., “Significant improved electrochemical performance of Li (Ni1/3Co1/3Mn1/3) O2 cathode on volumetric energy density and cycling stability at high rate,” Electrochemistry communications, vol. 9, no. 5, pp. 965-970, 2007.
[27] S.-W. Song, G. Zhuang, and P. Ross Jr, “Surface Film Formation on LiNi0. 8Co0. 15Al0. 05 O 2 Cathodes Using Attenuated Total Reflection IR Spectroscopy,” Journal of The Electrochemical Society, vol. 151, no. 8, pp. A1162, 2004.
[28] M. Gozu, K. Świerczek, and J. Molenda, “Structural and transport properties of layered Li1+ x (Mn1/3Co1/3Ni1/3) 1− xO2 oxides prepared by a soft chemistry method,” Journal of Power Sources, vol. 194, no. 1, pp. 38-44, 2009.
[29] Q. Cheng, W. He, X. Zhang et al., “Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries,” RSC advances, vol. 6, no. 13, pp. 10250-10265, 2016.
[30] P. Hu, Y. Duan, D. Hu et al., “Rigid–flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature,” ACS applied materials & interfaces, vol. 7, no. 8, pp. 4720-4727, 2015.
[31] M. Waqas, S. Ali, W. Lv et al., “High‐performance PE‐BN/PVDF‐HFP bilayer separator for lithium‐ion batteries,” Advanced Materials Interfaces, vol. 6, no. 1, pp. 1801330, 2019.
[32] L. Zhang, S. Wang, J. Li et al., “A nitrogen-containing all-solid-state hyperbranched polymer electrolyte for superior performance lithium batteries,” Journal of Materials Chemistry A, vol. 7, no. 12, pp. 6801-6808, 2019.
[33] R. Luo, C. Wang, Z. Zhang et al., “Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate Lithium ion batteries,” ACS Applied Energy Materials, vol. 1, no. 3, pp. 921-927, 2018.
[34] J. Shi, Y. Xia, Z. Yuan et al., “Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery,” Scientific reports, vol. 5, no. 1, pp. 1-9, 2015.
[35] H. Wang, and H. Gao, “A sandwich-like composite nonwoven separator for Li-ion batteries,” Electrochimica Acta, vol. 215, pp. 525-534, 2016.
[36] X. Zhu, X. Jiang, X. Ai et al., “A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries,” ACS applied materials & interfaces, vol. 7, no. 43, pp. 24119-24126, 2015.
[37] M.-Y. An, H.-T. Kim, and D.-R. Chang, “Multilayered separator based on porous polyethylene layer, Al 2 O 3 layer, and electro-spun PVdF nanofiber layer for lithium batteries,” Journal of solid state electrochemistry, vol. 18, no. 7, pp. 1807-1814, 2014.
[38] J.-A. Choi, S. H. Kim, and D.-W. Kim, “Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators,” Journal of Power Sources, vol. 195, no. 18, pp. 6192-6196, 2010.
[39] S. Chung, Y. Wang, L. Persi et al., “Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides,” Journal of power sources, vol. 97, pp. 644-648, 2001.
[40] W.-K. Shin, and D.-W. Kim, “High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries,” Journal of Power Sources, vol. 226, pp. 54-60, 2013.
[41] E.-S. Choi, and S.-Y. Lee, “Particle size-dependent, tunable porous structure of a SiO 2/poly (vinylidene fluoride-hexafluoropropylene)-coated poly (ethylene terephthalate) nonwoven composite separator for a lithium-ion battery,” Journal of Materials Chemistry, vol. 21, no. 38, pp. 14747-14754, 2011.
[42] H.-S. Jeong, and S.-Y. Lee, “Closely packed SiO2 nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries,” Journal of Power Sources, vol. 196, no. 16, pp. 6716-6722, 2011.
[43] J.-H. Park, J.-H. Cho, W. Park et al., “Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries,” Journal of Power Sources, vol. 195, no. 24, pp. 8306-8310, 2010.
[44] C. Shi, P. Zhang, L. Chen et al., “Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries,” Journal of Power Sources, vol. 270, pp. 547-553, 2014.
[45] C. Shi, J. Dai, X. Shen et al., “A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries,” Journal of Membrane Science, vol. 517, pp. 91-99, 2016.
[46] F. Croce, M. L. Focarete, J. Hassoun et al., “A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning,” Energy & Environmental Science, vol. 4, no. 3, pp. 921-927, 2011.
[47] J. Dai, C. Shi, C. Li et al., “A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes,” Energy & Environmental Science, vol. 9, no. 10, pp. 3252-3261, 2016.
[48] H. Xiang, H. Xu, Z. Wang et al., “Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes,” Journal of Power Sources, vol. 173, no. 1, pp. 562-564, 2007.
[49] J. Feng, P. Ma, H. Yang et al., “Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries,” Electrochimica Acta, vol. 114, pp. 688-692, 2013.
[50] J. Feng, Y. Cao, X. Ai et al., “Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries,” Electrochimica acta, vol. 53, no. 28, pp. 8265-8268, 2008.
[51] Z. Jin, H. Gao, C. Kong et al., “A novel phosphate-based flame retardant and film-forming electrolyte additive for lithium ion batteries,” ECS Electrochemistry Letters, vol. 2, no. 7, pp. A66, 2013.
[52] C.-C. Lin, H.-C. Wu, J.-P. Pan et al., “Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode,” Electrochimica Acta, vol. 101, pp. 11-17, 2013.
[53] H.-M. Liu, D. Saikia, H.-C. Wu et al., “Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries,” RSC Advances, vol. 4, no. 99, pp. 56147-56155, 2014.
[54] S. S. Zhang, “A review on electrolyte additives for lithium-ion batteries,” Journal of Power Sources, vol. 162, no. 2, pp. 1379-1394, 2006.
[55] Y. Ein‐Eli, S. F. McDevitt, D. Aurbach et al., “Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes,” Journal of The Electrochemical Society, vol. 144, no. 7, pp. L180, 1997.
[56] G. J. Chung, J. Han, and S.-W. Song, “Fire-preventing LiPF6 and ethylene carbonate-based organic liquid electrolyte system for safer and outperforming lithium-ion batteries,” ACS Applied Materials & Interfaces, vol. 12, no. 38, pp. 42868-42879, 2020.
[57] K. Abe, T. Takaya, H. Yoshitake et al., “Functional electrolyte: Additives for improving the cyclability of cathode materials,” Electrochemical and Solid State Letters, vol. 7, no. 12, pp. A462, 2004.
[58] J. Yang, P. Zhao, Y. Shang et al., “Improvement in high-voltage performance of lithium-ion batteries using bismaleimide as an electrolyte additive,” Electrochimica Acta, vol. 121, pp. 264-269, 2014.
[59] J. P. Pan, G. Y. Shiau, S. S. Lin et al., “Effect of barbituric acid on the self‐polymerization reaction of bismaleimides,” Journal of applied polymer science, vol. 45, no. 1, pp. 103-109, 1992.
[60] F.-M. Wang, H.-C. Wu, C.-S. Cheng et al., “High ionic transfer of a hyperbranched-network gel copolymer electrolyte for potential electric vehicle (EV) application,” Electrochimica Acta, vol. 54, no. 14, pp. 3788-3793, 2009.
[61] M. Kaur, and A. Srivastava, “Photopolymerization: A review,” Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 42, no. 4, pp. 481-512, 2002.
[62] H. Mark, “Encyclopedia of Polymer Science and Technology (2004),” Hoboken, New Jersey: J. Wiley and Sons.
[63] Y. Park, S. Lee, S.-H. Kim et al., “A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries,” Rsc Advances, vol. 3, no. 31, pp. 12625-12630, 2013.
[64] K. Hunger, L. Buschhaus, N. Schmeling et al., “Characterization of maleimide dimers in photo-cross-linked copolyimide films,” Physical Chemistry Chemical Physics, vol. 14, no. 13, pp. 4538-4547, 2012.
[65] Y. Cao, X. Ren, H. S. Mehr et al., “UV-Curable bismaleimides part I: Synthesis and photo-cure kinetics,” Progress in Organic Coatings, vol. 100, pp. 118-128, 2016.
[66] 江恆瑋, “提升矽陽極鋰離子電池之循環穩定性之研究,” 國立臺灣師範大學化學系碩士論文, 2013.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2021-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明