博碩士論文 108223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:52.14.224.159
姓名 沈哲宇(Zhe-Yu Shen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 添加劑與電場複合效應用於鋰離子電池三元系正極材料性能探討
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 先前鋰電池研究中發現影響鋰離子電池物性的關鍵主要源於固相電解質介面(Solid Electrolyte Interface,SEI),理想的SEI需要能夠保護電極避免電極與電解質產生不必要的副反應,此外為不阻礙鋰離子的嵌入/嵌出, SEI需要具有良好的離子傳導率才不影響電池之電性。
有鑑於此,本研究探討以特殊改質添加劑複合電場效應並探討其影響SEI 的生成組成以及改善鋰離子電池物性之效果。首先添加劑方面,本實驗以化合物AM與化合物BM進行共聚反應形成高分支網狀結構的添加劑o-AB。組成Li[Ni1/3Mn1/3Co1/3]O2/Li半電池測試,利用電子掃描顯微鏡(SEM)、X-射線光電子光譜(XPS)、循環伏安法(CV)及電化學阻抗頻譜(EIS)進行探討。該實驗數據證實o-AB確實參與SEI的形成且能夠減少電解質的分解並鋰鹽的消耗。透過1%及3% o-AB添加量讓電池電容量經過100圈充放電後從63.3(mAh/g) 分別提升至96.7(mAh/g)及109.1(mAh/g)。
利用電場效應的方式誘導無機物順向排列以增加極片孔洞。由電子掃描顯微鏡(SEM)可以看出外部施加電場的極片孔洞確實增加,除了電解液更易滲入之外也額外提供了鋰離子充放電嵌入/嵌出的管道,使電池充放電過程中活性物質不會遭到破壞,透過電場強度3000、4500及6000(V/cm)作用下 (e3000, e4500, e6000),100圈充放電循環後電容保持率從60.46%分別提升至89.56% (e3000)、100.76% (e4500)及100.48% (e6000)。
最後我們將添加劑複合電場效應用於鋰離子電池中,希望結合兩項技術優點為鋰離子電池帶來更優越的性能。透過五百圈長圈數測試可以看到,沒有任何修飾的電池在350圈後已經無法進行充放電,而在0% e4500電池經500圈循環後電容保持率僅15.51%。但同時添加劑與電場效應複合應用的1% e3000及3% e3000兩個比例下電容保持率分別提升為52.56%及72.14%。該結果顯示透過電場增加孔道後也讓添加劑更易滲入電極中並讓活性物質更均勻地產生SEI反應,以至於電池能夠長圈數循環後仍能繼續維持良好的電量。
摘要(英) Previous research on lithium batteries found that the key to the physical properties of lithium-ion batteries mainly stems from the solid electrolyte interface (SEI). The ideal SEI needs to be able to protect the electrode from unnecessary side reactions between the electrode and the electrolyte. In addition, it does not hinder lithium. For the insertion/extraction of ions, SEI needs to have good ionic conductivity so as not to affect the electrical properties of the battery.
In view of this, this study explores the compound electric field effect with special modifying additives and discusses its effect on the formation of SEI and the improvement of the physical properties of lithium-ion batteries. First of all, in terms of additives, in this experiment, the compound AM and the compound BM were copolymerized to form the additive o-AB with a highly branched network structure. Composition Li[Ni1/3Mn1/3Co1/3]O2/Li half-cell test using scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) Discuss. This experiment confirms that o-AB does participate in the formation of SEI and can reduce the decomposition of electrolyte and the consumption of lithium salt. With the addition of 1% and 3%, the battery capacity increased from 63.3 (mAh/g) to 96.7 (mAh/g) and 109.1 (mAh/g) after 100 cycles.
The electric field effect is used to induce the inorganic substances to be arranged in the forward direction to increase the pores of the electrode. It can be seen from the scanning electron microscope (SEM) that the pores of the electrode of the external applied electric field do increase. In addition to the easier penetration of the electrolyte, it also provides an extra diffusion channels for lithium ion to make the active material will not be destroyed in the battery charging and discharging process. Under the action of electric field strength of 3000, 4500 and 6000 (V/cm) (e3000, e4500, e6000), the capacity retention rate increases from 60.46% to 89.56% (e3000), 100.76% (e4500) and 100.48% (e6000) after 100 cycles.
Finally, we apply the additive compound electric field effect to lithium-ion batteries, hoping to combine the two technical advantages to bring better performance to lithium-ion batteries. Through the 500 cycle life test, it can be seen that the battery without any modification can no longer be charged and discharged after 350 cycles, and the capacity retention rate of the 0% e4500 battery after 500 cycles is only 15.51%. But at the same time, the capacity retention rate under the two ratios of 1% e3000 and 3% e3000 for the combined application of the additive and the electric field effect are 52.56% and 72.14%, respectively. The results show that increasing the pores through the electric field also allows the additives to more easily penetrate into the electrode and allows the active material to produce the SEI reaction more uniformly, so that the battery can continue to maintain good power after long cycles.
關鍵字(中) ★ 鋰離子電池
★ 雙馬來酰亞胺
★ 電場效應
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 vi
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1前言 1
1-2 鋰電池基本工作原理 2
1-3 鋰離子電池目前面臨問題 4
1-3-1 電池壽命問題 4
1-3-2 安全性問題 5
1-4 研究動機與目的 6
第二章 文獻回顧 8
2-1 陰極材料簡介 8
2-1-1 金屬氧化物 8
2-1-2 磷酸物 8
2-1-3 三元系正極材料 9
2-2 固態電解質介面(SEI)簡介 9
2-2-1 SEI生成機制 10
2-2-2 以SEM與AFM鑑定SEI層表面 13
2-2-3 以FTIR及Raman光譜鑑定SEI 15
2-2-4 以XPS鑑定SEI 17
2-3 改良鋰離子電池之添加劑 18
2-3-1 陽極添加劑 19
2-3-2 陰極添加劑 22
2-3-3 安全性添加劑 25
2-4 電場效應 29
第三章 實驗 31
3-1 實驗藥品、器材與儀器設備 31
3-1-1實驗藥品 31
3-1-2 實驗器材 33
3-1-3 實驗儀器設備 33
3-2 實驗方法 34
3-2-1 添加劑的製備 35
3-2-2 正極極片製作 36
3-3-3 電場誘導之正極極片製作 37
3-3-4 鈕扣型半電池組裝 38
第四章 結果與討論 40
4-1 添加劑應用於鋰離子電池 40
4-1-1 添加劑之合成鑑定 40
4-1-2 循環伏安法之鈍化層探討 42
4-1-3 X-光光電子能譜儀之鈍化層探討 43
4-1-4 掃描式電子顯微鏡(SEM)之電極表面型態分析 45
4-1-5 交流阻抗測試 46
4-1-6 變速率測試圖 48
4-1-7 循環壽命的測試 49
4-2 電場效應用於鋰離子電池之特性 50
4-2-1 施加電場最佳時間之測試 50
4-2-2 掃描式電子顯微鏡(SEM)之電極表面型態分析 51
4-2-3 變速率充放電測試 53
4-2-4循環壽命測試 54
4-3 添加劑與電場複合效應用於鋰離子電池 56
4-3-1 變速率充放電測試 56
4-3-2 循環壽命測試 59
4-3-3 循環伏安法之鈍化層探討 62
4-4-4 X-光光電子能譜儀之鈍化層探討 63
4-4-5 掃描式電子顯微鏡(SEM)之電極表面型態分析 65
4-4-6 交流阻抗測試 68
4-4-7 電池長圈數循環壽命測試 70
第五章 結論與未來展望 73
參考文獻 75
參考文獻 [1] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, “A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles.”, Journal of Power Sources, vol. 226, pp. 272–288, 2013.
[2] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, “A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications.”, Journal of Power Sources, vol. 241, pp. 680–689, 2013.
[3] L. Zhou, Y. Zheng, M. Ouyang, L. Lu, “A Study on Parameter Variation Effects on Battery Packs for Electric Vehicles.”, Journal of Power Sources, vol. 364, pp. 242–252, 2017.
[4] 郭妍希 : Molel S火燒車後續:電池遭撞擊起火、火勢似難滅。2013年10月3號,取自https://news.cnyes.com/news/id/1822137.
[5] 黃慧雯 : 三星公布Note7爆炸原因 元凶是它。2017年1月23號。取自https://www.chinatimes.com/realtimenews/20170123001920-260412?chdtv.
[6] G.Ceder, G. Hautier, A. Jain, S.P. Ong, “Recharging Lithium Battery Research with Fi Rst-Principles Methods.”, Materials Research Society, vol. 36, pp. 185–191, 2011.
[7] C. Liu, Z. Neale, G. Cao, “Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries.”, Materials Today, vol. 19, pp. 109–123, 2016.
[8] Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li,“A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards.”, Journal of Energy Chemistry, vol. 59, pp. 83–99, 2021.
[9] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, “Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery.”, Journal of Power Sources, vol. 208, pp. 210–224, 2012.
[10] D. P. Abraham, E.P. Roth, R. Kostecki, K. McCarthy, S. MacLarend, D.H. Doughty, “Diagnostic Examination of Thermally Abused High-Power Lithium-Ion Cells.”, Journal of Power Sources, vol. 161, pp. 648–657, 2006.
[11] S. F. Schuster, T. Bach, E. Fleder, J. Müller, M. Brand, “Nonlinear Aging Characteristics of Lithium-Ion Cells under Different Operational Conditions.”, Journal of Energy Storage, vol. 1, pp. 44–53, 2015.
[12] T. C Bach, S. F. Schuster, E. Fleder, J. Müller, M. J. Brand, H. Lorrmann, A. Jossen, G. Sextl, “Nonlinear Aging of Cylindrical Lithium-Ion Cells Linked to Heterogeneous Compression.”, Journal of Energy Storage, vol. 5, pp. 212–223, 2016.
[13] X. G. Yang, Y. Leng, G. Zhang, S. Ge, C. Y. Wang, “Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging.”, Journal of Power Sources, vol. 360, pp. 28–40, 2017.
[14] J. Park, W. Y. Appiah, S. Byun, D. Jin, M. H. Ryou, Y. M. Lee, “Semi-Empirical Long-Term Cycle Life Model Coupled with an Electrolyte Depletion Function for Large-Format Graphite/LiFePO4 Lithium-Ion Batteries.”, Journal of Power Sources, vol. 365, pp. 257–265, 2017.
[15] F. Leng, Z. Wei, C. M. Tan, R. Yazami, “Hierarchical Degradation Processes in Lithium-Ion Batteries during Ageing.”, Electrochimica Acta, vol. 256, pp. 52–62, 2017.
[16] X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang, “A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle.”, eTransportation, vol. 1, 2019.
[17] Y. Kang, Z. Liang, Y. Zhao, H. Xu, K. Qian, X. He, T. Li, J. Li, “Large-Scale Synthesis of Lithium- and Manganese-Rich Materials with Uniform Thin-Film Al2O3 Coating for Stable Cathode Cycling.”, SCIENCE CHINA Materials, vol. 11, 2020.
[18] J. Wang, Z. Hu, X. Yin, Y. Li, H. Huo, J. Zhou, L. Li, “Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries.”, Electrochimica Acta, vol. 159, pp. 61–65, 2015.
[19] D. Ren, X. Feng, L. Lu, M. Ouyang, S. Zheng, J. Li, X. He, “An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery.”, Journal of Power Sources, vol. 364, pp. 328–340, 2017.
[20] Z. Wang, H. Yang, Y. Li, G. Wang, J. Wang, “Thermal Runaway and Fire Behaviors of Large-Scale Lithium Ion Batteries with Different Heating Methods.”, Journal of Hazardous Materials, vol. 379, 2019.
[21] P. Liu, C. Liu, K. Yang, M. Zhang, F. Gao, B. Mao, H. Li, Q. Duan, Q. Wang, “Thermal Runaway and Fire Behaviors of Lithium Iron Phosphate Battery Induced by over Heating.”, Journal of Energy Storage, vol. 31, 2020.
[22] Y. Zheng, X. Han, L. Lu, J. Li, M. Ouyang, “Lithium Ion Battery Pack Power Fade Fault Identification Based on Shannon Entropy in Electric Vehicles.”, Journal of Power Sources, vol. 223, pp. 136–146, 2013.
[23] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, “Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review.”, Energy Storage Materials, vol. 10, pp. 246–267, 2018.
[24] E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K. W. Nam, H. L. Xin, C. Jaye, D.A. Fischer, K. Amine, X. Q. Yang, “Evolution of Redox Couples in Li- and Mn-Rich Cathode Materials and Mitigation of Voltage Fade by Reducing Oxygen Release.”, Nature Energy, vol. 3, pp. 690–698, 2018.
[25] L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, “Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries.”, Energy & Environmental Science, vol. 4, pp. 269–284, 2011.
[26] H. Gao, F. Maglia, P. Lamp, K. Amine, Z. Chen, “Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode−Electrolyte Interface in Lithium-Ion Batteries.”, ACS Appl. Mater. Interfaces, vol. 9, pp. 44542−44549, 2017.
[27] 莊志遠, “改良式具高分期結構添加劑對於電極界面鋰離子遷移之探討”, 國立中央大學化學系碩士論文, 2014
[28] Y. D, ZHANG, L. Yi, X. H. XIA, X. L. WANG, C. D. GU, J. P. TU, “High-Energy Cathode Materials for Li-Ion Batteries: A Review of Recent Developments.”, SCIENCE CHINA Technological Sciences, 2015.
[29] X. Chen, Y. Tian, “Review of Graphene in Cathode Materials for Lithium-Ion Batteries.”, Energy Fuels, vol. 35, pp. 3572−3580, 2021.
[30] K. Ozawa, “Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: The LiCoO2/C System.”, Solid State Ionies, vol. 69 pp. 212–221, 1994.
[31] J. Marzec, K. S´wierczek, J. Przewoz´nik, J. Molenda, D.R. Simon, E.M. Kelder, J. Schoonman, “Conduction Mechanism in Operating a LiMn2O4 Cathode.”, Solid State Ionies, vol. 146, pp. 225–237, 2002.
[32] F. Cao, J. Prakash, “A Comparative Electrochemical Study of LiMn2O4 Spinel Thin-Film and Porous Laminate.”, Electrochimica Acta, vol. 146, pp. 1607–1613, 2002.
[33] H. Q. Wang, F. Y. Lai, Y. Li, X. H. Zhang, Y. G. Huang, S. J. Hu, Q. Y. Li, “Excellent Stability of Spinel LiMn2O4-Based Cathode Materials for Lithium-Ion Batteries.”, Electrochimica Acta, 2015.
[34] A. Yamada, M. Tanaka, “Jahn-Teller Structural Phase Transition around 280K in LiMn2O4.”, Materials Research Bulletin, vol. 30, pp. 715–721, 1995.
[35] P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, “Determination of the Chemical Diffusion Coefficient of Lithium in LiFePO4.”, Solid State Ionics, vol. 148, pp. 45–51, 2002.
[36] S. Shi, L. Liu, C. Ouyang, D. S. Wang, Z. Wang, L. Chen, X. Huang, “Enhancement of Electronic Conductivity of LiFePO4 by Cr doping and Its Identification by First-Principles Calculations.”, PHYSICAL REVIEW B, vol. 68, pp. 195108, 2003.
[37] Z. Liu, A. Yu, J. Y. Lee, “Synthesis and Characterization of LiNi1-x-yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries.”, Journal of Power Sources, vol. 81–82, pp. 416–419, 1999.
[38] 張育豪, “改善鋰離子電池電性之新穎電解液添加劑”, 國立中央大學化學系碩士論文, 2016
[39] N. L. Hamidah, F. M. Wang, G. Nugroho “The Understanding of Solid Electrolyte Interface (SEI) Formation and Mechanism as the Effect of Flouro‐o-Phenylenedimaleimaide (F‐MI) Additive on Lithium‐ion Battery.”, Surf Interface Anal., vol. 51, pp. 345–352, 2018.
[40] L. Wang, B. W. Eichhorn, “Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes.”, Chem. Mater., vol. 32,pp. 3765−3775, 2020.
[41] P. Verma, P. Maire, P. Novak, “A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries.”, Electrochimica Acta, vol. 55, pp. 6332–6341, 2010.
[42] 陳佑頎;吳昱賢;張家欽, “鋰離子電解質-鋰離子傳遞的橋樑”, 科學發展, 第564期, pp. 16-20, 2019.
[43] J. B. Goodenough, Y. Kim, “Challenges for Rechargeable Li Batteries.”, Chem. Mater., vol. 22, pp. 587–603, 2010.
[44] V. A. Agubra, J. W. Fergus, “The Formation and Stability of the Solid Electrolyte Interface on the Graphite Anode.”, Journal of Power Sources, vol. 268, pp. 153–162, 2014.
[45] S. Y. Luchkin, S. A. Lipovskikh, N. S. Katorova, A. A. Savina, A. M. Abakumov, K. J. Stevenson, “Solid-Electrolyte Interphase Nucleation and Growth on Carbonaceous Negative Electrodes for Li-Ion Batteries Visualized with in Situ Atomic Force Microscopy.”, Scientific Reports, 2020.
[46] D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, “New Insights into the Interactions between Electrode Materials and Electrolyte Solutions for Advanced Nonaqueous Batteries.”, Journal of Power Sources, vol. 81–82, pp. 95–111, 1999.
[47] T. Eriksson, A. M. Andersson, A. G. Bishop, C. Gejke, T. Gustafsson, J. O. Thomas, “Surface Analysis of LiMn2O4 Electrodes in Carbonate-Based Electrolytes.”, Journal of The Electrochemical Society, vol. 149, pp. A69–A78, 2002.
[48] H. Zhang, D. Wang, C. Shen “In-Situ EC-AFM and Ex-Situ XPS Characterization to Investigate the Mechanism of SEI Formation in Highly Concentrated Aqueous Electrolyte for Li-Ion Batteries.”, Applied Surface Science, 2019.
[49] A. M. Haregewoin, A. S. Wotango, B. J. Hwang, “Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives.”, Energy Environ. Sci, vol. 9, pp. 1955–1988, 2016.
[50] S Komaba., B. Kaplan, T. Ohtsuka, Y. Kataoka, N. Kumagai, H. Groult “Inorganic Electrolyte Additives to Suppress the Degradation of Graphite Anodes by Dissolved Mn(II) for Lithium-Ion Batteries.”, Journal of Power Sources, vol. 119–121, pp. 378–382, 2003.
[51] K. C. Mo¨ller, H.J. Santner, W. Kern, S. Yamaguchi, J.O. Besenhard, M. Winter, “In Situ Characterization of the SEI Formation on Graphite in the Presence of a Vinylene Group Containing Film-Forming Electrolyte Additives.”, Journal of Power Sources, vol. 119–121, pp. 561–566, 2003.
[52] E. G. Leggesse, J. C. Jiang, “Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries.”, J. Phys. Chem. A, vol. 116, pp. 11025−11033, 2012.
[53] A. Naji, J. Ghanbaja, P. Willmann, D. Billaud, “New Halogenated Additives to Propylene Carbonate-Based Electrolytes for Lithium-Ion Batteries.”, Electrochimica Acta, vol. 45, pp. 1893–1899, 2000.
[54] K. Abe, T. Takaya, H. Yoshitake, Y. Ushigoe, M. Yoshio, H. Wang, “Functional Electrolyte: Additives for Improving the Cyclability of Cathode Materials.”, Electrochemical and Solid-State Letters, vol. 7, pp. A462–A465, 2004.
[55] J. Xia, N. N. Sinha, L. P. Chen, J. R. Dahn, “A Comparative Study of a Family of Sulfate Electrolyte Additives.”, Journal of The Electrochemical Society, vol. 161, pp. A264–A274, 2014.
[56] L. Liao, X. Cheng, Y. Ma, P. Zuo, W. Fang, G. Yin, Y. Gao “Fluoroethylene Carbonate as Electrolyte Additive to Improve Low Temperature Performance of LiFePO4 Electrode.”, Electrochimica Acta, vol. 87, pp. 466–472, 2013.
[57] A. K. Haridas, Q. A. Nguyen, T. Terlier, R. Blaser, S. L. Biswal, “Investigating the Compatibility of TTMSP and FEC Electrolyte Additives for LiNi0.5Mn0.3Co0.2O2 (NMC)−Silicon Lithium-Ion Batteries.”, Appl. Mater. Interfaces, vol. 13, p. 2662−2673, 2021.
[58] X. Wang, E. Yasukawa, S. Kasuya, “Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries.”, Journal of The Electrochemical Society, vol. 148, pp. A1058–A1065, 2001.
[59] H. F. Xiang, H.Y. Xu, Z.Z. Wang, C.H. Chen, “Dimethyl Methylphosphonate (DMMP) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes.”, Journal of Power Sources, vol. 173, pp. 562–564, 2007.
[60] R. P. Dunn, J. Kafle, F. C. Krause, C. Hwang, B. V. Ratnakumar, M. C. Smart, B. L. Lucht, “Electrochemical Analysis of Li-Ion Cells Containing Triphenyl Phosphate.”, Journal of The Electrochemical Society, vol. 159, pp. A2100–A2108, 2012.
[61] B. Wu, P. Pei, Y. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, “An Electrochemically Compatible and Flame-Retardant Electrolyte Additive for Safe Lithium Ion Batteries.”, Journal of Power Sources, vol. 227, pp. 106–110, 2013.
[62] K. Xu, M. S. Ding, S. Zhang, J. L. Allen, T. R. Jow, “An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes.”, Journal of The Electrochemical Society, vol. 149, pp. A622–A626, 2002.
[63] Z. Lin, Y. Liu, S. Raghavan, K. Moon, S. K. Sitaraman, C. P. Wong, “Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation.”, Appl. Mater. Interfaces, vol. 5, p. 7633−7640, 2013.
[64] Z. Rozynek, H. Mauroy, R. C. Castberg, K. D. Knudsen, J. O. Fossum, “DIPOLAR ORDERING OF CLAY PARTICLES IN VARIOUS CARRIER FLUIDS.”, REVISTA CUBANA DE FÍSICA, vol. 29, 2012.
[65] K. Kim, H. Ju, J. Kim, “Filler Orientation of Boron Nitride Composite via External Electric Field for Thermal Conductivity Enhancement.”, Ceramics International, vol. 42, 2000, pp. 8657–8663, 2016.
[66] 江恒瑋, “提升矽陽極鋰離子電池之循環穩定性之研究”, 國立臺灣師範大學化學系碩士論文, 2013
指導教授 諸柏仁 審核日期 2021-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明