博碩士論文 108223035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.119.157.224
姓名 吳秉晏(Ping-Yen Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 在銅奈米立方體上建構非均勻相雙金屬表 面以利費托合成之應用
(Fischer Tropsch Synthesis Reaction over Heterogeneous Bimetallic Surfaces on Single Cu Nanocubes)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自1970年代的能源危機之後,由於石油的短缺,使得全球開始重視替代性能源的生產,費托合成即是其中一個具有代表性的例子。費托合成可以透過催化劑與一氧化碳和氫氣的催化聚合反應,產生各種有價值的烴類產品。廣泛的研究集中在提高催化劑的活性與提升高價值化合物的選擇率。其中,由於合金材料的協同效應,包括電子效應和應變效應,使得由多元素組成的奈米催化劑效能優於單元素奈米催化劑。不僅如此,參雜少量的貴金屬促進劑可以進一步提升催化性能與產物選擇率。在此,我們設計了銅-銅鉑-銅鎳在結構上對應為核-框架-表面三金屬奈米催化劑的合成方法,不同於其他文獻中的三元合金催化劑,在本篇研究的催化劑中,其邊緣和頂點的材料為銅鉑合金,而表面的材料則為銅鎳合金。為了探討此催化劑在中每個成分與合金對費托反應的影響,我們合成了另一種銅-銅鉑-銅鈀三金屬催化劑做為比較,同時測試每個元素與合金在費托反應中的催化能力。在結果中,銅-銅鉑-銅鎳在所有材料中擁有最高的催化能力。除了費托合成的應用,由於此催化劑在單一奈米顆粒上擁有兩種不同的合金,它同時擁有在氣象中進行連續催化的能力。我們期望未來可利用其兩種不同材料的界面在於異質氣相催化反應中進行串聯催化。
摘要(英) Since the energy crisis in the 1970s, the world began to notice the importance of alternative energy sources due to the oil shortage. Fischer-Tropsch synthesis (FTS) reaction is one of the representative examples. FTS reaction can produce a variety of valuable hydrocarbon products through carbon monoxide and hydrogen catalyzed by catalysts. Extensive researches were focused on significantly increasing the selectivity of specific high economic value compounds and improving the activity of catalysts. In particular, multimetallic catalysts have better catalytic performance due to the synergy of electronic and strain effects. Additionally, introduce a small amount of promoter can further enhance the activity and product selectivity. In this research, we employed the synthesis of trimetallic Cu-CuPt-CuNi core-frame-face trimetallic nanocrystals. Different to typical alloy, this trimetallic nanostructure possesses CuPt alloy on edge and CuNi alloy on face. In order to investigate the effect of each element and alloy in FTS reaction. We synthesized another trimetallic nanocrystals Cu-CuPt-CuPd to compare and test the catalytic performance of each element and alloy. In the results, Cu-CuPt-CuNi shows the highest catalytic ability and conversion among the catalysts. In addition to the application of FTS reaction, owing to the two different alloys on the surface, Cu-CuPt-CuNi also has the potential for tandem catalysis. We expect this nanocrystal can be applied for heterogeneous gas phase tandem catalysis in near future.
關鍵字(中) ★ 銅鉑鎳
★ 銅鉑鈀
★ 核殼結構
★ 費托合成
關鍵字(英) ★ CuPtNi
★ CuPtPd
★ core-shell
★ Fischer Tropsch Synthesis Reaction
論文目次 摘 要....................................i
ABSTRACT......................................ii
誌 謝.........................................iii
Table of Contents.............................iv
List of Figures...............................vii
List of Tables................................x
Chapter I Overview............................1
1-1 Research Background.......................1
1-2 Research Motivation.......................2
Chapter II Introduction.......................4
2-1 Fischer-Tropsch Synthesis.................4
2-1-1 Mechanism of Fischer-Tropsch synthesis (FTS) reaction......................................4
2-1-2 Active Materials........................5
2-1-3 Promoters...............................6
2-1-4 Bimetallic catalysts....................6
2-2 Nanomaterial..............................8
2-2-1 Nanocrystal.............................8
2-2-2 Shape-Controlled Synthetic Approach.....8
2-3 Tandem Catalysis..........................8
2-3-1 Concept of Tandem Catalysis of Nanocrystal Bilayers......................................8
2.3.2 Tandem Catalysis for CO2 Hydrogenation to C2-C4 Hydrocarbons..................................10
Chapter III Experimental section..............13
3-1 Chemicals.................................13
3-2 Procedure of Synthesis Catalyst...........13
3-2-1 Synthesis of Cu Nanocubes...............13
3-2-2 Synthesis of Rhombic Dodecahedral Cu-CuPt Core-Frame Nanocrystals..................................14
3-2-3 Synthesis of Cu-CuNi Core-Shell Nanocubes.....................................14
3-2-4 Synthesis of Rhombic Dodecahedral Cu-CuPt-CuPd Core-Frame-Face Nanocrystals.......................15
3-2-5 Synthesis of Rhombic Dodecahedral Cu-CuPt-CuPd Core-Frame-Face Nanocrystals.......................16
3-2-6 Synthesis of Rhombic Dodecahedral Cu-CuPt-CuNi Core-Frame-Face Nanocrystals.......................16
3-3 Procedure of Catalysis....................17
3-3-1 Fischer-Tropsch Process.................17
3-3-2 Heterogeneous Catalysis System..........17
3-4 Characterization..........................19
Chapter IV Results and discussion.............21
4-1 Structural Analysis of Cu-CuPt-CuNi Core-Frame-Face Trimetallic Nanocrystal.......................21
4-2 Structural Analysis of Cu-CuPt-CuPd Core-Frame-Face Trimetallic Nanocrystal.......................28
4-3 Catalytic Performance of Trimetallic and Comparisons toward Fischer-Tropsch Synthesis Reaction......................................35
Conclusions...................................45
Bibliography..................................46
參考文獻 〔1〕Hernández, S.; Amin Farkhondehfal, M.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. “Syngas Production from Electrochemical Reduction of CO2: Current Status and Prospective Implementation,” Green Chem., 19 (10), May 2017, 2326–2346.
〔2〕De Smit, E.; Weckhuysen, B. M.. “The Renaissance of Iron-based Fischer–tropsch Synthesis: On the Multifaceted Catalyst Deactivation Behaviour,” Chem. Soc. Rev., 37 (12), October 2008, 2758.
〔3〕Shi, X.; Wen, Y.; Guo, X.; Pan, Y.; Ji, Y.; Ying, Y.; Yang, H.. “Dentritic CuPtPd Catalyst for Enhanced Electrochemical Oxidation of Methanol,” ACS Appl. Mater. Interfaces., 9 (31), July 2017, 25995–26000.
〔4〕Lyu, L.-M.; Kao, Y.-C.; Cullen, D. A.; Sneed, B. T.; Chuang, Y.-C.; Kuo, C.-H.. “Spiny Rhombic Dodecahedral Cupt Nanoframes with Enhanced Catalytic Performance Synthesized from Cu Nanocube Templates,” Chem. Mater., 29 (13), June 2017, 5681–5692.
〔5〕Schimka, L.; Harl, J.; Stroppa, A.; Grüneis, A.; Marsman, M.; Mittendorfer, F.; Kresse, G.. “Accurate Surface and Adsorption Energies from Many-body Perturbation Theory,” Nat. Mater., 9 (9), July 2010, 741–744.
〔6〕Yamada, Y.; Tsung, C.-K.; Huang, W.; Huo, Z.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P.. “Nanocrystal Bilayer for Tandem Catalysis,” Nat. Chem., 3 (5), April 2011, 372–376.
〔7〕Chae, H. J.; Kim, J.-H.; Lee, S. C.; Kim, H.-S.; Jo, S. B.; Ryu, J.-H.; Kim, T. Y.; Lee, C. H.; Kim, S. J.; Kang, S.-H.; Kim, J. C.; Park, M.-J.. “Catalytic Technologies for CO Hydrogenation for the Production of Light Hydrocarbons and Middle Distillates,” Catalysts, 10 (1), January 2020, 99.
〔8〕Schaidle, J. A.; Thompson, L. T.. “Fischer–tropsch Synthesis over Early Transition Metal Carbides and Nitrides: CO Activation and Chain Growth,” J. Catal., 329, September 2015, 325–334.
〔9〕Turner, M. L.; Long, H. C.; Shenton, A.; Byers, P. K.; Maitlis, P. M.. “The Alkenyl Mechanism for Fischer-Tropsch Surface Methylene Polymerisation; the Reactions of Vinylic Probes with CO/H2 over Rhodium Catalyst,” Chem. Eur. J., 1 (8), November 1995, 549–556.
〔10〕Perego, C.; Bortolo, R.; Zennaro, R.. “Gas to Liquids Technologies for Natural Gas Reserves Valorization: The Eni Experience,” Catal. Today, 142 (1-2), April 2009, 9–16.
〔11〕James, O.O.; Mesubi, A.M.; Ako, T.C.; Maity, S. “Increasing carbon utilization in Fischer–Tropsch synthesis using H2-deficient or CO2-rich syngas feeds,” Fuel Process. Technol., 91, February 2010, 136–144.
〔12〕Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S.. “A Review of Advanced Catalyst Development for Fischer–Tropsch Synthesis of Hydrocarbons from Biomass Derived Syn-gas,” Catal. Sci. Technol., 4 (8), May 2014, 2210–2229.
〔13〕Schulz, H.. “Short History and Present Trends of Fischer–Tropsch Synthesis,” Appl Catal A Gen, 186 (1-2), October 1999, 3–12.
〔14〕Fadlalla, M. I.; Babu, S. G.; Nyathi, T. M.; Weststrate, C. J. K.-J.; Fischer, N.; Niemantsverdriet, J. W. H.; Claeys, M.. “Enhanced Oxygenates Formation in the Fischer–Tropsch Synthesis over Co- and/or Ni-containing Fe Alloys: Characterization and 2D Gas Chromatographic Product Analysis,” ACS Catal., 10 (24), November 2020, 14661–14677.
〔15〕Khodakov, A. Y.; Chu, W.; Fongarland, P.. “Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-chain Hydrocarbons and Clean Fuels,” Chem. Rev., 107 (5), May 2007, 1692–1744.
〔16〕Jacobs, G.; Ma, W.; Davis, B. “Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts,” Catalysts, 4, March 2014, 49–76.
〔17〕Jacobs, G.; Das, T.K.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B.H. “Fischer–Tropsch synthesis: Support, Loading, and Promoter effects on the Reducibility of Cobalt Catalysts,” Appl Catal A Gen, 233, July 2002, 263–281.
〔18〕Jalama, K.; Coville, N. J.; Hildebrandt, D.; Glasser, D.; Jewell, L. L.; Anderson, J. A.; Taylor, S.; Enache, D.; Hutchings, G. J.. “Effect of the Addition of Au on Co/TiO2 Catalyst for the Fischer–Tropsch Reaction,” Top. Catal., 44 (1-2), June 2007, 129–136.
〔19〕Pirola, C.; Scavini, M.; Galli, F.; Vitali, S.; Comazzi, A.; Manenti, F.; Ghigna, P.. “Fischer–Tropsch Synthesis: EXAFS Study of Ru and Pt Bimetallic Co Based Catalysts,” Fuel, 132, September 2014, 62–70.
〔20〕Jacobs, G.; Sarkar, A.; Ji, Y.; Luo, M.; Dozier, A.; Davis, B. H.. “Fischer−Tropsch Synthesis: Assessment of the Ripening of Cobalt Clusters and Mixing Between Co and Ru Promoter via Oxidation−reduction-cycles over Lower Co-loaded Ru−Co/Al2O3 Catalysts,” Ind. Eng. Chem. Res., 47 (3), December 2007, 672–680.
〔21〕Li, J.; Jacobs, G.; Zhang, Y.; Das, T.; Davis, B. H.. “Fischer–Tropsch Synthesis: Effect of Small Amounts of Boron, Ruthenium and Rhenium on Co/TiO2 Catalysts,” Appl Catal A Gen, 223 (1-2), January 2002, 195–203.
〔22〕Das, T. K.; Jacobs, G.; Patterson, P. M.; Conner, W. A.; Li, J.; Davis, B. H.. “Fischer-Tropsch Synthesis: Characterization and Catalytic Properties of Rhenium Promoted Cobalt Alumina Catalysts,” Fuel, 82 (7), May 2003, 805–815.
〔23〕Feyzi, M.; Irandoust, M.; Mirzaei, A. A.. “Effects of Promoters and Calcination Conditions on the Catalytic Performance of Iron–manganese Catalysts for Fischer–Tropsch Synthesis,” Fuel Process. Technol., 92 (5), May 2011, 1136–1143.
〔24〕Yang, Y.. “Effect of Potassium Promoter on Precipitated Iron-manganese Catalyst for Fischer-Tropsch Synthesis,” Appl Catal A Gen, 266 (2), July 2004, 181–194.
〔25〕Ngantsoue-Hoc, W.; Zhang, Y.; O’Brien, R. J.; Luo, M.; Davis, B. H. “Fischer−Tropsch Synthesis: Activity and Selectivity for Group I Alkali Promoted Iron-based Catalysts,” Appl Catal A Gen, 236 (1-2), September 2002, 77–89.
〔26〕Jacobs, G.; Ribeiro, M. C.; Ma, W.; Ji, Y.; Khalid, S.; Sumodjo, P. T. A.; Davis, B. H.. “Group 11 (Cu, Ag, Au) Promotion of 15%Co/Al2O3 Fischer–Tropsch Synthesis Catalysts,” Appl Catal A Gen, 361 (1-2), June 2009, 137–151.
〔27〕Jothimurugesan, K.; Gangwal, S. K. “Titania-Supported Bimetallic Catalysts Combined with HZSM-5 for Fischer–Tropsch Synthesis,” Ind. Eng. Chem. Res., 37 (4), March 1998, 1181– 1188
〔28〕van de Loosdrecht, J.; van der Kraan, A. M.; van Dillen, A. J.; Geus, J. W. “Metal-support interaction: titania-supported nickel-iron catalysts,” Catal. Lett., 41 (1), March 1996, 27– 34
〔29〕Feyzi, M.; Khodaei, M. M.; Shahmoradi, J. “Effect of sulfur on the catalytic performance of Fe–Ni/Al2O3 catalysts for light olefins production,” J. Taiwan Inst. Chem. Eng., 45 (2), March 2014, 452– 460.
〔30〕Feyzi, M.; Mirzaei, A. A.; Bozorgzadeh, H. R. “Effects of preparation and operation conditions on precipitated iron nickel catalysts for Fischer–Tropsch synthesis,” J. Nat. Gas Chem., 19 (3), May 2010, 341– 353.
〔31〕Ishihara, T.; Eguchi, K.; Arai, H. “Hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni and Ni-Fe bimetallic catalysts,” Appl. Catal., 30 (2), April 1987, 225– 238.
〔32〕Tihay, F.; Pourroy, G.; Roger, A. C.; Kiennemann, A. “Selective Synthesis of C2-C4 Olefins on Fe-Co Based Metal/oxide Composite Materials,” Stud. Surf. Sci. Catal., Vol. 119, 1998, pp 143– 148.
〔33〕Tihay, F.; Roger, A. C.; Kiennemann, A.; Pourroy, G. “Fe–Co based metal/spinel to produce light olefins from syngas,” Catal. Today, 58 (4), May 2000, 263– 269.
〔34〕Tihay, F.; Roger, A. C.; Pourroy, G.; Kiennemann, A. “Role of the Alloy and Spinel in the Catalytic Behavior of Fe-Co/Cobalt Magnetite Composites under CO and CO2 Hydrogenation,” Energy Fuels, 16 (5), July 2002, 1271– 1276.
〔35〕Duvenhage, D. J.; Coville, N. J. “Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction: Part 4: A study of nitrate and carbonyl derived FT catalysts,” J. Mol. Catal. A Chem., 235 (1), July 2005, 230-239.
〔36〕Duvenhage, D. J.; Coville, N. J. “Fe:CoTiO2 bimetallic catalysts for the Fischer–Tropsch reaction I. Characterization and reactor studies,” Appl Catal A Gen , 153 (1), May 1997, 43– 67.
〔37〕Duvenhage, D. J.; Coville, N. J. “Fe:Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction: Part 2. The effect of calcination and reduction temperature,” Appl Catal A Gen, 233 (1), July 2002, 63– 75.
〔38〕Duvenhage, D. J.; Coville, N. J. “Fe:Co/TiO bimetallic catalysts for the Fischer-Tropsch reaction: Part 3: The effect of Fe:Co ratio, mixing and loading on FT product selectivity,” Appl Catal A Gen, 289 (2), August 2005, 231– 239.
〔39〕 Xiao, K.; Qi, X.; Bao, Z.; Wang, X.; Zhong, L.; Fang, K.; Lin, M.; Sun, Y.. “CuFe, CuCo and CuNi Nanoparticles as Catalysts for Higher Alcohol Synthesis from Syngas: A Comparative Study,” Catal. Sci. Technol., 3 (6), March 2013 1591.
〔40〕Wu, T.; Cai, W.; Zhang, P.; Song, X.; Gao, L.. “Cu–Ni@SiO2 Alloy Nanocomposites for Methane Dry Reforming Catalysis,” RSC Adv., 3 (46), October 2013, 23976.
〔41〕Azizi, H. R.; Mirzaei, A. A.; Kaykhaii, M.; Mansouri, M. “Fischer–Tropsch synthesis: Studies effect of reduction variables on the performance of Fe–Ni–Co catalyst,” J Nat Gas Sci Eng, 18, May 2014, 484– 491.
〔42〕Ferrando, R.; Jellinek, J.; Johnston, R. L., “Nanoalloys: From theory to applications of alloy clusters and nanoparticles,” Chem. Rev., 108 (3), March 2008, 845-910.
〔43〕Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. “Understanding of Strain Effects in the Electrochemical Reduction of CO2: Using Pd Nanostructures as an Ideal Platform,” Angew. Chem., 56 (13), February 2017, 3594-3598.
〔44〕Deng, Y. J.; Tian, N.; Zhou, Z. Y.; Huang, R.; Liu, Z. L.; Xiao, J.; Sun, S. G., “Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure,” Chem. Sci., 3 (4), January 2012, 1157-1161.
〔45〕Somorjai, G. A.; Tao, F.; Park, J. Y., “The Nanoscience Revolution: Merging of Colloid Science, Catalysis and Nanoelectronics,” Top. Catal., 47 (1-2), February 2008, 1-14.
〔46〕Stakheev, A. Y.; Kustov, L. M.. “Effects of the Support on the Morphology and Electronic Properties of Supported Metal Clusters: Modern Concepts and Progress in 1990s,” Appl Catal A Gen, 188 (1-2), November 1999, 3-35.
〔47〕Yamada, Y.; Tsung, C.-K.; Huang, W.; Huo, Z.; Habas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P.. “Nanocrystal Bilayer for Tandem Catalysis,” Nat. Chem., 3(5), April 2011, 372–376.
〔48〕Xie, C.; Chen, C.; Yu, Y.; Su, J.; Li, Y.; Somorjai, G. A.; Yang, P.. “Tandem Catalysis for CO2 Hydrogenation to C2–C4 Hydrocarbons,” Nano Lett., 17 (6), May 2017, 3798–3802.
指導教授 謝發坤 郭俊宏(Fa-Kuen Shieh Chun-Hong Kuo) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明