博碩士論文 105623015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.144.10.134
姓名 林崇聖(Chung-Sheng Lin)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 動態視星等之星象辨識演算法
(STAR PATTERN RECOGNITION ALGORITHM FOR DYNAMIC MAGNITUDE)
相關論文
★ 太空電漿探針系統★ 太空離子探測系統
★ 微衛星離子探測系統★ 電子溫度儀在太空電漿模擬艙之量測
★ 先進電離層探測儀之機構設計與分析★ 先進電離層探測儀離子流向推導與校正
★ 探空火箭姿態計★ 先進電離層探測儀地面電子測試設備
★ 熱真空測試系統★ 太空電漿模擬艙自動化監控系統
★ 數位式探空火箭姿態量測模組★ 先進電離層探測儀整合測試系統
★ 先進電離層探測儀數位控制單元之研製★ 探空十號火箭的姿態重建與分析
★ 先進電離層雙生儀地面電子測試設備★ 先進電離層探測儀
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 星象儀是一種量測精確姿態的儀器,本論文描述星象儀演算法的基本架構與整合,及提出新的「星辨識」演算法。演算法架構由「影像處理」至「星搜尋與質心計算」,接著進入「星辨識」,最後「計算姿態」。其中「影像處理」與「星搜尋與質心計算」合併,並未探討影像校正的內容。
提出新的辨識方法,是延伸至過去的星辨識方法,參考常見的「一維特徵向量法」 [1],以及「金字塔法」 [2]。「一維特徵向量法」有簡易搜尋方法,且能輕鬆建立資料庫,但是加入誤差項目與未取得精確相機參數時,穩定性較低。「金字塔法」穩定性高,但對應相機可見星數量越多時,資料庫大小急遽增加。必須簡化資料庫、縮短搜尋時間。改動相機參數時,需花費時間研究資料庫的調整。納入兩種方式的優點,建立出穩定性高的新方法-「分級平均特徵法」。
新方法的特色是針對不同相機拍攝時,影像中最暗視星等的動態範圍變化有高容忍度。表現的結果在誤差項目的少星及位置誤差中有極高的穩定性。因此設定的視星等範圍內,可使用相同的辨識參數及資料庫。最終測試的模擬結果,確認辨識正確率可達99.93%,且高於其他辨識方法。結合追蹤模式時,即使設定嚴苛的測試條件,正確率仍高於99%。
最後電腦模擬測試、實驗室平臺測試、戶外實拍測試三部分,證明星象儀演算法與硬體整合的穩定性。未來可針對模擬失敗或錯誤的視軸,新增額外條件判定,減少或避免辨識失敗或錯誤的發生。另外也需研究動態影像的影響,確認拖曳星點造成的辨識率與精確度的變化。
摘要(英) This paper describes how to organize the algorithm of the star tracker , and proposes a new star identification algorithm. Different cameras have different parameters. Even with the same type of the camera, there are still some differences in the images with the different cameras. If the algorithms do not use the adjusting library and parameters according to the camera parameters, they may be affected or even impossible to complete. The new method closely follows the impact of changes in interest to stars. It is possible to use the same library and parameters to complete work.
The new star identification method, “Group Average Value Method”, extends from two methods, "one-dimensional vector method" [1], and "Pyramid method" [2]. One-dimensional vector method has a simple search method and is easy to build a database, but it is susceptible to the position error, false stars, and lost stars. Its stability is lower than that of the pyramid method. It is stable and fast when it needs to accurately correspond to the camera parameters. When the number of stars in the database of the pyramid method is increases, the size of the database will increase rapidly. It is necessary to simplify the database and increase the speed of the search method. Once the camera parameters are changed, it takes time to study the adjustment of the database. In order to achieve a new method with high stability, the advantages of the two methods are taken out and integrated into a new star identification method, namely the “Group Average Value Method”.
The new method solves the position error. The lost stars or false stars within a certain number, it can work well. It also has a simple method to establish database and search the stars in the database. It can achieve stable work with different camera and dynamic magnitude.
Finally, through the PC simulation test, Laboratory platform test, and real sky test, the stability of the new algorithm was confirmed. Additional conditions can be added in the algorithm which of the simulation failure or error regions. They can reduce or avoid the occurrence of identification failures or errors. In addition, it is necessary to study the impact of dynamic conditions of the images to confirm the changes in recognition rate and attitude accuracy caused by smeared star spots.
關鍵字(中) ★ 星象儀 關鍵字(英)
論文目次 摘要 i
ABSTRACT iii
第1章 星象儀簡介 1
第1.1節 姿態的重要性 1
第1.2節 姿態量測儀器 2
第1.3節 星象儀與姿態 5
第1.4節 軟體架構 8
第2章 姿態計算 15
第2.1節 四元數姿態之誤差函數 16
第2.2節 特徵方程式 17
第2.3節 最大特徵值與特徵向量 19
第3章 星辨識 22
第3.1節 一維特徵向量辨識法 24
第3.2節 金字塔辨識法 34
第3.3節 分級平均特徵法 37
第3.4節 設計辨識演算法 38
第4章 星搜尋與質心計算 42
第4.1節 定義座標系 42
第4.2節 星質心 45
第4.3節 星搜尋 47
第4.4節 動態星 49
第4.5節 調整後之星搜尋與質心計算 51
第5章 卡爾曼濾波 52
第5.1節 卡爾曼濾波數學式 52
第5.2節 四元數與卡爾曼濾波 54
第6章 模擬與測試 60
第6.1節 資料庫整理 61
第6.2節 模擬星圖 64
第6.3節 模擬測試 65
第6.3.1小節 LIS模式測試 69
第6.3.2小節 星辨識法之比較 76
第6.3.3小節 LIS加追蹤模式測試 80
第6.4節 實驗室測試平臺 84
第6.5節 實驗室平臺測試 89
第6.6節 戶外實拍測試 91
第7章 結論 100
參考文獻 103
A 數學推導 105
A.1 外積 105
A.2 特徵方程式係數推導 107
A.3 最大特徵值至特徵向量 110
A.4 特徵值與特徵向量之疊代法 112
A.5 Roll, Pitch, Yaw與旋轉矩陣 113
B 座標系與三維空間推導 115
B.1 影像平移之投影方法 115
B.2 天球至相機平面公式 119
參考文獻 [1] L. Luo, L. Xu and H. Zhang, "An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors," sensors, pp. 16412-16429, 7 July 2015.
[2] D. Mortari, M. A. Samaan, C. Bruccoleri and J. L. Junkins, "The Pyramid Star Identification Technique," NAVIGATION, vol. 51, no. 3, pp. 171-183, Fall 2004.
[3] C. Padgett and K. Kreutz-Delgado, "A Grid Algorithm for Autonomous Star Identification," IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 1, pp. 202-213, January 1997.
[4] C. L. Cole and J. L. Crassidis, "Fast Star Pattern Recognition Using Planar Triangles".
[5] L. F. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control, New York: Springer, 2014.
[6] "WIKIPEDIA Quartic equation," [Online]. Available: https://en.wikipedia.org/wiki/Quartic_equation.
[7] ccjou, "線代啟示錄," [Online]. Available: https://ccjou.wordpress.com/. [Accessed 19 03 2021].
[8] 王海涌, 李晶津 and 许二帅, "Gauss analytic solving method for coordinates and radius of star image centroid of star sensor," 2014.
[9] J. Yan, J. Jiang and G. Zhang, "Dynamic imaging model and parameter optimization for a star tracker," OPTICS EXPRESS, vol. Vol. 24, no. No. 6, p. 5961, 21 3 2016.
[10] silverwind1982. [Online]. Available: https://silverwind1982.pixnet.net/blog/post/167680859. [Accessed 19 03 2021].
[11] Y. Kim and H. Bang, Introduction and Implementations of the Kalman Filter, 2018.
[12] Masood-Ur-Rehman, J. Fang, S. Faycal and W. Quan, "Automatic Star Pattern Recognition in Tracking Mode," IEEE, pp. 249-252, 1 2009.
[13] L. Semiconductor Components Industries, "NOIP1SN1300A PYTHON 1.3/0.5/0.3 MegaPixels Global Shutter CMOS Image Sensors," 4 2018. [Online]. Available: https://www.onsemi.com/pdf/datasheet/noip1sn1300a-d.pdf. [Accessed 3 6 2021].
[14] "How to Evaluate Camera Sensitivity," flir, 17 3 2021. [Online]. Available: https://www.flir.asia/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity/. [Accessed 4 6 2021].
[15] J. T. Burnett, "Accuracy Performance of Star Trackers–A Tutorial," IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 38, no. 2, pp. 587-599, 4 2002.
[16] 桂. 祐史, "桂田研究室," [Online]. Available: http://nalab.mind.meiji.ac.jp/. [Accessed 07 12 2016].
[17] H. Wang, Y. Wang, Z. Li and Z. Song, "Systematic centroid error compensation for the simple Gaussian PSF in an electronic star map simulator," Chinese Journal of Aeronautics, vol. 27, no. 4, pp. 884-891, 18 March 2014.
[18] J. Yan, J. Jiang and G. Zhang, "Dynamic imaging model and parameter optimization for a star tracker," OPTICS EXPRESS, vol. 24, no. 6, pp. 5961-5983, 9 Mar 2016.
指導教授 趙吉光 審核日期 2021-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明