博碩士論文 108223008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.220.163.91
姓名 黃品瑜(Ping-Yu Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 可溶性具硫鏈環戊烷二噻吩衍生物 有機光電材料之開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-27以後開放)
摘要(中) 本論文主要可以分為有機薄膜電晶體 (OTFTs)、有機光伏打電池 (OPVs) 和電洞傳輸層 (HTLs) 的材料開發。
  有機薄膜電晶體 (OTFTs) 的部分,本研究成功以具硫鏈之環戊烷二噻吩衍生物 (CDTS) 為核心,開發出三種不同碳鏈之醌型結構,包含 CDTSQ-8 (1)、CDTSQ-10 (2) 和 CDTSQ-12 (3)。同時,將拉電子基團 INCl 接上核心CDTS,開發出另一種 OTFTs 材料 INClCDTS-10 (4)。其中 CDTSQ-10 (2) 及 CDTSQ-12 (3) 已取得晶體確定分子結構,發現分子間存在硫···氮作用力,使得分子間堆疊緊密。目前 CDTSQ-10 (2) 之載子移動率達 0.1 cm2V-1s-1,其餘分子仍在進行元件測試中。
  有機光伏打電池 (OPVs) 的部分,本研究利用所發現合成不同位向之 5-CHO-TSRBr (30) 及 4-CHO-TSRBr (31) 的反應條件,將 CDT 及 CDTS 進一步擴環,使 TCDT 及 TCDTS 核心接上不同位置的醛基,再分別於末端接上拉電子基團 IN 與 INCl,共開發出八種可溶性有機光伏打電池材料。TCDT 核心包括 IN-TCDT (5)、INCl-TCDT (6)、4-IN-TCDT (7) 及 4-INCl-TCDT (8),而 TCDTS核心包括 IN-TCDTS (9)、INCl-TCDTS (10)、4-IN-TCDTS (11) 及 4-INCl-TCDTS (12),目前正進行其 OPV 元件之測試。
  最後,在電洞傳輸層 (HTLs) 的部分,本研究將 CDTS 核心以 D-A-D 設計為基礎,兩側外掛 TPA推電子基團,開發出一種新型電洞傳輸層材料 CDTS-2D (14),同時合成出 CDT-2D (13) 進行比較。經測量發現 CDTS-2D (14) 的energy gap比 CDT-2D (13) 縮小許多。CDTS-2D (14) 作為添加劑應用於 Pb-based 的鈣鈦礦太陽能電池目前初步測試具有 14.04 % 之光電轉換效率。
  這些新材料經由 UV-vis 及 DPV 測量其光學及電化學性質(HOMO、LUMO 能階),且經 DSC 及 TGA 測量其熱穩定性,而使用這些新開發的小分子材料所應用之光電元件正在優化中。
摘要(英) A series of new organic optoelectronic materials were synthesized and characterized for organic thin film transistors (OTFTs), organic photovoltaic cells (OPVs), and hole transporting layers (HTLs).
For the OTFTs, CDTS-based quinoidals with three different alkyl chains, CDTSQ-8 (1), CDTSQ-10 (2) and CDTSQ-12 (3) were synthesized. At the same time, the electron withdrawing group INCl was connected to the core (CDTS) to give INClCDTS-10 (4). Single-crystal X-ray diffraction of CDTSQ-10 (2) and CDTSQ-12 (3) have obtained and reveal intermolecular interaction between S and N, which promote a tight molecular stacking. Currently, via solution shearing, CDTSQ-10 (2) exhibits the best n-channel transport with the highest mobility up to 0.1 cm2V-1s-1. Optoelectronic devices based on these new developed small molecules are under examination and optimization.
For the organic photovoltaics, 2-bromo-3-thioalkylthiophene were formylated to give isomeric 4- and 5-CHO-TSRBr in two different reaction conditions. Further, both new units were coupled with CDT and CDTS to give four new cores, TCDT and TCDTS. Lastly, the above four cores were end-capped with two electron withdrawing groups, IN and INCl, to give IN-TCDT (5), INCl-TCDT (6), 4-IN-TCDT (7) and 4-INCl-TCDT (8) for the TCDT series and IN-TCDTS (9), INCl-TCDTS (10), 4-IN-TCDTS (11) and 4-INCl-TCDTS (12) for the TCDTS series.
Finally, one new CDTS-based hole transporting molecule was developed, where the CDTS core was end-capped with triphenylamino (TPA) unit. For comparison, CDT-based hole transporting molecule CDT-2D (13) was synthesized. It is found that the energy gap of CDTS-2D (14) is much smaller than CDT-2D (13). Currently, CDTS-2D (14) as additive exhibits power conversion efficiency of 14.04% in Pb-based PSC.
The optical and electrochemical properties (HOMO and LUMO) of these new materials were characterized by UV-vis and DPV. Thermal properties were investigated by DSC and TGA. Optoelectronic devices used these new developed small molecules are under optimization.
關鍵字(中) ★ 有機薄膜電晶體
★ 有機光伏打電池
★ 電洞傳輸層
關鍵字(英) ★ OTFT
★ OPV
★ HTL
論文目次 目 錄
摘 要 i
Abstract iii
謝 誌 v
目 錄 vi
List of Figures xii
List of Schemes xiv
List of Tables xvi
附 錄 xvii
第一章 緒論 1
1-1 前言 2
1-2 有機薄膜電晶體之概論 3
1-3 有機薄膜電晶體之元件結構 7
1-4 有機薄膜電晶體之運作原理 9
1-5 有機薄膜電晶體的應用 10
1-6 有機薄膜電晶體導電性質之基本公式及特性 12
1-6-1 載子移動率 (Mobility, μ) 12
1-6-2 開關電流比 (on / off current ratio) 13
1-6-3 起始電壓 (Threshold Voltage, VT) 14
1-7 有機半導體電荷傳遞機制 15
1-8 有機半導體分子載子移動率影響因素 17
1-8-1 分子設計 17
1-8-2 有機半導體分子結晶度 17
1-8-3 有機半導體分子排列模式 18
1-9 有機薄膜的製備方式 20
1-9-1 氣相沉積 20
1-9-2 液相沉積 21
1-10 有機薄膜電晶體材料 23
1-10-1 P-type 有機薄膜電晶體材料 23
1-10-2 N-type 有機薄膜電晶體材料 26
1-10-3 Ambipolar 有機薄膜電晶體材料 29
1-11 有機太陽能電池之概論 31
1-11-1 矽晶太陽能電池 32
1-11-2 無機化合物半導體太陽能電池 33
1-11-3 有機太陽能電池 34
1-12 有機光伏打電池之基本元件組成 35
1-13 有機光伏打電池之運作原理 36
1-13-1 光子吸收 (Optical absorption) 37
1-13-2 激子擴散與分離 (Exction diffusion and dissociation) 37
1-13-3 電荷傳輸 (Charge transfer) 38
1-13-4 電荷收集 (Charge collection) 38
1-14 有機光伏打電池之元件演變 39
1-14-1 雙層式異質接面 (Bilayer heterojunction, PHJ) 39
1-14-2 體異質接面 (Bulk heterojunction, BHJ) 40
1-14-3 串聯結構 40
1-15 有機光伏打電池參數介紹 41
1-15-1 J-V 曲線 42
1-15-2 短路電流 (Short circuit current, JSC) 43
1-15-3 開環電壓 (Open circuit voltage, VOC) 43
1-15-4 外部量子效率 (Eternal quantum efficiency, EQE) 44
1-15-5 填充因子 (Fill factor, FF) 44
1-15-6 能量轉換效率 (Power conversion efficiency, η, PCE) 44
1-16 有機光伏打電池材料 45
1-16-1 P-type 有機光伏打材料 (Donor) 45
1-16-2 N-type 有機光伏打材料 (Acceptor) 49
1-17 鈣鈦礦太陽能電池簡介 56
1-17-1 基本構造 58
1-17-2 工作原理 60
1-17-3 電洞傳輸層 60
1-18 研究動機與目的 63
1-18-1 有機薄膜電晶體材料 63
1-18-2 有機光伏打電池材料 66
1-18-3 電洞傳輸層材料 68
第二章 實驗部份 69
2-1 化合物名稱對照 70
2-2 實驗藥品 73
2-3 實驗儀器 76
2-4 合成步驟 79
3,3′-Dibromo-2,2′-bithiophene (15) 之合成 79
4H-Cyclopenta[2,1-b:3,4-b′]dithiophene (17) 之合成 80
4-(Bis(octylthio)methylene)-2,6-dibromo-4H-cyclopenta[2,1-b:3,4 -b′]dithiophene (19, diBr-CDTS-8) 之合成 81
4-(Bis(decylthio)methylene)-2,6-dibromo-4H-cyclopenta[2,1-b:3,4 -b′]dithiophene (21, diBr-CDTS-10) 之合成 83
4-(Bis(odecylthio)methylene)-2,6-dibromo-4H-cyclopenta[2,1-b:3, 4-b′]dithiophene (23, diBr-CDTS-12) 之合成 85
CDTSQ-8 (1) 之合成 87
CDTSQ-10 (2) 之合成 88
CDTSQ-12 (3) 之合成 89
4-(Bis(decylthio)methylene)-4H-cyclopenta[2,1-b:3,4-b′]dithiophe- ne-2,6-dicarbaldehyde (24, diCHO-CDTS-10) 之合成 90
INClCDTS-10 (4) 之合成 91
(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2, 6-diyl)bis(tributylstannane) (26, diTin-CDT-b8) 之合成 93
2-Bromo-3-((2-ethylhexyl)thio)thiophene (29, TSR-b8-Br) 之合成 94
5-Bromo-4-((2-ethylhexyl)thio)thiophene-2-carbaldehyde (30, 5-CHO-TSRBr) 及 5-Bromo-4-((2-ethylhexyl)thio) thiophene-3- carbaldehyde (31, 4-CHO-TSRBr) 之合成 97
5,5′-(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene -2,6-diyl)bis(4-((2-ethylhexyl)thio)thiophene-2-carbaldehyde) (33, 5-diCHO-TCDT) 之合成 99
5,5′-(4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene -2,6-diyl)bis(4-((2-ethylhexyl)thio)thiophene-3-carbaldehyde) (34, 4-diCHO-TCDT) 之合成 101
2-(3-Oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (35, IN) 之合成 102
2-(5,6-Dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononi- trile (37, INCl) 之合成 103
IN-TCDT (5) 之合成 104
INCl-TCDT (6) 之合成 105
4-IN-TCDT (7) 之合成 106
4-INCl-TCDT (8) 之合成 107
(4-(Bis((2-ethylhexyl)thio)methylene)-4H-cyclopenta[2,1-b:3,4-b′] dithiophene-2,6-diyl)bis(tributylstannane) (39, diTin- CDTS-b8) 之合成 109
5,5′-(4-(Bis((2-ethylhexyl)thio)methylene)-4H-cyclopenta[2,1-b: 3,4-b′]dithiophene-2,6-diyl)bis(4-((2-ethylhexyl)thio)thiophene-2 -carbaldehyde) (41, 5-diCHO- TCDTS) 之合成 111
5,5′-(4-(Bis((2-ethylhexyl)thio)methylene)-4H-cyclopenta[2,1-b: 3,4-b′]dithiophene-2,6-diyl)bis(4-((2-ethylhexyl)thio)thiophene-3 -carbaldehyde) (42, 4-diCHO- TCDTS) 之合成 114
IN-TCDTS (9) 之合成 115
INCl-TCDTS (10) 之合成 116
IN-TCDTS (11) 之合成 117
INCl-TCDTS (12) 之合成 118
4-Methoxy-N-(4-methoxyphenyl)-N-(4-(tributyl-stannyl)phenyl) aniline (44, TPA-Tin) 之合成 119
2,6-Dibromo-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (45, diBr -CDT) 之合成 121
CDT-2D (13) 之合成 121
4-(Bis(butylthio)methylene)-2,6-dibromo-4H-cyclope- nta[2,1-b:3,4-b′]dithiophene (47, diBr-CDTS-4) 之合成 122
CDTS-2D (14) 之合成 124
第三章 結果與討論 126
3-1 diCHO-TCDTs 系列化合物之合成方法探討 127
3-2 有機半導體材料之光學性質探討 129
3-2-1 有機薄膜電晶體 (OTFTs) 130
3-2-2 有機光伏打電池 (OPVs) 132
3-2-3 電洞傳輸層 (HTLs) 136
3-3 有機半導體材料之光學性質探討 138
3-3-1 有機薄膜電晶體 (OTFTs) 139
3-3-2 有機光伏打電池 (OPVs) 141
3-3-3 電洞傳輸層 (HTLs) 143
3-4 有機半導體材料之光學性質探討 144
3-4-1 有機薄膜電晶體 (OTFTs) 145
3-4-2 有機光伏打電池 (OPVs) 147
3-4-3 電洞傳輸層(HTLs) 149
3-5 有機半導體材料之晶體探討 151
3-5-1 有機薄膜電晶體 (OTFTs) 151
第四章 結論 154
附錄 168
參考文獻 江文彥, 科學發展. 2002, 359, 68.
Chiang, C. K.; Gau, S. C.; Druy, M. A.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. J. Am. Chem. Soc. 1978, 100, 1013-1015.
Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society, Chemical Communications 1977, 16, 578-580.
Dawon, K. U.S. Patent 1963, No. 3,102,230.
Tsumura, A.; Koezuka, K.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.
Horowitz, G.; Fichou, D.; Peng, X. Z.; Xu, Z. G.; Garnier, F. Solid State Commun. 1989, 72, 381-384.
Takeyama, Y.; Ono, S.; Matsumoto, Y. Applied Physics Letters 2012, 101, 083303.
Yuan, Y.; Giri, G.; Ayzner, A. L; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Nature Communication 2014, 5, 3005.
陳勝禹,有機薄膜電晶體材料雙噻吩蒽之開發.國立中央大學化學研究所碩士論文, 2006.
Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv. Mater. 2005, 17, 1705- 1725.
Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Science 1999, 283, 822-824.
Dickey, K. C.; Smith, T. J.; Stevenson, K. J.; Subramanian, S.; Anthony, J. E.; Loo, Y. L. Chem. Mater. 2007, 19, 5210-5215.
Murphy, A. R.; Frechet, J. M. Chem. Rev. 2007, 107, 1066-1096.
Yoon, M.-H.; Yan, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10388-10395.
Horowitz, G. Adv. Mater. 1998, 10, 365-377.
郭家瑋, 有機薄膜電晶體之載子傳輸特性研究. 國立成功大學物理研究所博士論文, 2006.
Glaeser, R. M.; Berry R. S. J. Chem. Phys. 1966, 44, 3797-3810.
Gargi, D.; Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Toney, M. F.; O’Connor, B. T. J. Phys.Chem. C. 2013, 117, 17421-17428.
黃楚芸, 可溶性 N 型醌型三併環噻吩與 P 型多併環噻吩有機薄膜電晶體材料之開發. 國立中央大學化學研究所碩士論文, 2015.
倪偵翔, 可溶性有機薄膜電晶體材料之開發. 國立中央大學化學研究所碩士論文, 2006.
Anthony, J. E. Chem. Rev. 2006, 106, 5028-5048.
Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158.
Liang, Y.; Chen, Z.; Jing, Y.; Rong, Y.; Facchetti, A.; Yao, Y. J. Am. Chem. Soc. 2015, 137, 4956-4959.
Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Nature. 2011, 480, 504-508.
Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489-1502.
Wen, Y.; Liu, Y. Adv. Mater. 2010, 22, 1331-1345.
Gao, X.; Zhao, Z. Science China Chemistry, 2015. 58, 947-968.
Dimitrakopoulos, C. D.; Malenfant, P. R. Adv. Mater. 2002, 14, 99-117.
Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Nature, 2011, 480, 504-508.
Takimiya, K.; Ebata, H.; Sakamoto, K.; Izawa, T.; Otsubo, T.; Kunugi, Y. J. Am. Chem. Soc. 2006, 128, 12604-12605.
Iino, H.; Usui, T., Hanna, J. I. Nature communications, 2015, 6, 1-8.
Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. 2007, 129, 2224.
Kang, M. J.; Doi, I.; Mori, H.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H. Adv. Mater. 2011, 23, 1222-1225.
Yuan, Y.; Huang, J.; Giri, G.; Zoombelt, A. P.; Bao, Z.; Ayzner, A. L.; Mannsfeld, S. C. B.; Nordlund, D.; Toney, M. F.; Chen, J. Nat. Commun 2014, 5, 3005.
Yang, Y. S.; Yasuda, T.; Kakizoe, H.; Mieno, H.; Kino, H.; Tateyama, Y.; Adachi, C. Chemical Communications 2013, 49, 6483-6485.
Okamoto, T.; Mitsui, C.; Yamagishi, M.; Nakahara, K.; Soeda, J.; Hirose, Y.; Miwa, K.; Sato, H.; Yamano, A.; Matsushita, T.; Uemura, T.; Takeya, J. Adv. Mater. 2013, 25, 6392-6397.
Panzer, M. J.; Frisbie, C. D. J. Am. Chem. Soc. 2007, 129, 6599-6607.
Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; McNeill, C. R.; Sirringhaus, H.; Kim, J.-S.; Heeney, M. J. Am. Chem. Soc. 2015, 137, 6866-6879.
McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; Mcgehee, M. D.; Toney, M. F. Nature materials, 2006, 5, 328-333.
Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B. C.; Yan, F.; Kline, R. J.; Anthopoulos, T. D.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154-15157.
Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477-9483.
Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827-838.
Letizia, J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 13476-13477.
Yun, S. W.; Kim, J. H.; Shin, S.; Yang, H.; An, B. K.; Yang, L.; Park, S. Y. Adv. Mater. 2012, 24, 911-915.
Ando, S.; Murakami, R.; Nishida, J. I.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 14996-14997.
Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T. Chem. Mater. 2008, 20, 7486-7491.
Wu, Q.; Li, R.; Hong, W.; Li, H.; Gao, X.; Zhu, D. Chem. Mater. 2011, 23, 3138-3140.
Wu, H.; Wang, Y.; Qiao, X.; Wang, D.; Yang, X.; Li, H. Chem. Mater. 2018, 30, 6992-6997.
Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656-13657.
Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679-686.
Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. J. Am. Chem. Soc.2012, 134, 16532-16535.
Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; Van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678-682.
Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Chem. Mater. 2016, 28, 2209.
Grätzel, M. Inorg. Chem. 2005, 44, 6841-6851.
Chapin, D. M.; Fuller, C. C.; Person, G. L. J. Appl. Phys. 1954, 25, 676-677.
Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44-48.
from: https://www.nrel.gov/pv/cell-efficiency.html
Marinova, N.; Valero, S.; Delgado, J. L. J. Colloid Interface Sci. 2017, 488, 373-389.
McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics (Second Edition), Academic Press., Switzerland, 2011.
Arkhipov, V. I.; Heremans, P.; Bässler, H. Appl. Phys. Lett. 2003, 82, 4605.
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474-1476.
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
Schulze, K.; Riede, M.; Brier, E.; Reinold, E.; Bäuerle, P.; Leo, K. J. Appl. Phys. 2008, 104, 074511.
Sakai, J.; Taima, T.; Yamanari, T.; Saito, K. Sol. Energy Mater. Sol. C. 2009, 93, 1149.
Zhou, J.; Wan, X.; Liu, Y.; Long, G.; Wang, F.; Li, Z.; Zuo, L.; Li C.; Chen, Y. Chem. Mater. 2011, 23, 4666-4668.
Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44-48.
Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. photonics 2009, 3, 649-653.
He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. photonics 2012, 6, 591-595.
Qin, Y.; Ye, L.; Zhang, S.; Zhu, J.; Yang, B.; Ade, H.; Hou, J. J. Mater. Chem. A, 2018, 6, 4324-4330.
Arai, R.; Furukawa, S.; Hidaka, Y.; Komiyama, H.; Yasuda, T. ACS Appl. Mater. Interfaces, 2019, 11, 9259-9264.
Arai, R.; Furukawa, S.; Sato, N.; Yasuda, T. J. Mater. Chem. A, 2019, 7, 20187-20192.
Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162-163.
Pfuetzner, S.; Meiss, J.; Petrich, A.; Riede, M.; Leo, K. Appl. Phys. Lett. 2009, 94, 223307.
Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532-538.
He, Y.; Chen, H. Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377-1382.
Zhao, G.; He, Y.; Li, Y. Adv. Mater. 2010, 22, 4355-4358.
Dittmer, J. J.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Rost, H.; Holmes, A. B. Synth.Met. 1999, 102, 879-880.
Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2013, 25, 4403-4406.
Singh, R.; Aluicio-Sarduy, E.; Kan, Z.; Ye, T.; MacKenzie, R. C. I.; Keivanidis, P. E. J. Mater. Chem. A 2014, 2, 14348-14353.
Cai, Y.; Huo, L.; Sun, X.; Wei, D.; Tang, M.; Sun, Y. Adv. Energy Mater. 2015, 5, 1500032.
Jiang, W.; Ye, L.; Li, X.; Xiao, C.; Tan, F.; Zhao, W.; Hou, J.; Wang, Z. Chem. Commun. 2014, 50, 1024-1026.
Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Hou, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156-11162.
Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W., Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z. H.; Heeger, A. J. J. Am. Chem. Soc. 2016, 138, 375-380.
Zhang, G.; Zhao, J.; Chow, P. C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018, 118, 3447-3507.
Winzenberg, K. N.; Kemppinen, P.; Scholes, F. H.; Collis, G. E.; Shu, Y.; Singh, T. B.; Bilic, A.; Forsyth, C. M.; Watkins, S. E. Chem. Commun. 2013, 49, 6307-6309.
Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Röhr, J. A.; Tan, C. H.; Collado-Fregoso, E.; Knall. A. C.; Durrant, J. R.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 898-904.
Zhang, H.; Liu, Y.; Sun, Y.; Li, M.; Ni, W.; Zhang, Q.; Wan, X.; Chen, Y. Sci. China Chem. 2017, 60, 366-369.
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170-1174.
Yang, Y.; Zhang, Z.-G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. F. J. Am. Chem. Soc. 2016, 138, 15011-15018.
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148-7151.
Wan, J.; Zhang, L.; He, Q.; Liu, S.; Huang, B.; Hu, L.; Zhou, W.; Chen, Y. Adv.Funct. Mater. 2020, 30, 1909760.
Hong, L.; Yao, H.; Cui, Y.; Ge, Z.; Hou, J. APL Materials, 2020, 8, 120901.
Li, S.; Li, C. Z.; Shi, M.; Chen, H. ACS Energy Letters, 2020, 5, 1554- 1567.
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. Sci. Bull. 2020, 65, 272-275.
Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H. RSC Adv. 2018, 8, 10489-10508.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1-7.
Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Adv. Mater. 2017, 29(46), 1703852.
Tian, X.; Stranks, S. D.; You, F. Sci. Adv. 2020, 6(31), eabb0055.
https://www.pv-magazine.com/2021/04/06/unist-epfl-claim-25-6-efficiency-world-record-for-perovskite-solar-cell/
Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photonics Energy, 2016, 6, 022001.
Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Nature Energy, 2016, 1, 1-7.
陳彥均, 不同膜厚之電子傳輸及電洞注入層對有機發光二極體之性質影響分析. 聖約翰科技大學自動化及機電整合研究所碩士學位論文, 2011
Wang, J.; Wang, S.; Li, X.; Zhu, L.; Meng, Q.; Xiao, Y.; Li, D. Chem. Commun. 2014, 50, 5829-5832.
Kang, M. S.; Sung, S. D.; Choi, I. T.; Kim, H.; Hong, M.; Kim, J.; Lee, W. I.; Kim, H. K. ACS Appl. Mater. Interfaces 2015, 7, 22213-22217.
Feng, J. Y.; Lai, K. W.; Shiue, Y. S.; Singh, A.; Kumar, C. P.; Li, C. T.; Wu, W. T.; Lin, J. T.; Chu, C. W.; Chang, C. C.; Su, C. C. J. Mater. Chem. A 2019, 7, 14209-14221.
Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Chang, W. K.; Zhang, X.; Sun, H. L.; Chen, G. C.; Feng, X.; Woo, H. Y.; Djurišic´, A. B.; He, Z.; Guo, X. Adv. Mater. 2019, 1902781.
Sun, X.; Deng, X.; Li, Z.; Xiong, B.; Zhong, C.; Zhu, Z.; Li, Z.; Jen, K. Y. ACS Appl. Mater. Interfaces 2020, 12, 32712–32718.
Zhang, C.; Zang, Y.; Zhang, F.; Diao, Y.; McNeill, C. R.; Di, C. A.; Zhu, D., Zhu, D. Adv. Mater. 2016, 28, 8456-8462.
Vegiraju, S.; He, G. Y.; Kim, C.; Priyanka, P.; Chiu, Y. J.; Liu, C. W.; Huang, C. Y.; Ni, J. S.; Facchetti, A. Adv. Funct. Mater., 2017, 27, 1606761.
Vegiraju, S.; Lin, C. Y.; Priyanka, P.; Huang, D. Y.; Luo, X. L.; Tsai, H. C.; Hong, S. H.; Yeh, C. J.; Lien, W. C.; Wang, C. L.; Tung, S. H.; Liu, C. L.; Chen, M. C.; Facchetti, A. Adv. Funct. Mater. 2018, 28, 1801025.
Ho, D; Vegiraju, S.; Choi, D.; Cho, C. H.; Kwon, G.; Huang, P. C.; Lee, G. H.; Earmme, T.; Yau, S. L.; Chen, M. C.; Kim, C. Dyes and Pigments, 2019, 163, 725-733.
Lee, J.; Kim, J.; Nguyen, T. L.; Kim, M.; Park, J.; Lee, Y.; Hwang, S.; Kwon, Y. W.; Kwak, J.; Woo, H. Y. Macromolecules, 2018, 51, 3360- 3368.
Lee, J.; Ko, S. J.; Lee H.; Huang, J.; Zhu, Z.; Seifrid, M.; Vollbrecht, J.; Brus, V. V.; Karki, A.; Wang, H.; Cho, K.; Nguyen, T. Q.; Bazan G. C. ACS Energy Lett. 2019, 4, 1401-1409
Wang, W.; Zhao, B.; Cong, Z.; Xie, Y.; Wu, H.; Liang, Q.; Liu, S.; Liu, F.; Gao, C.; Wu, H.; Cao, Y. ACS Energy Lett. 2018, 3, 1499-1507.
Zou, Y.; Dong, Y. Y.; Sun, C. K.; Wu, Y.; Yang, H.; Cui, C. H.; Li, Y. F. Chem. Mater. 2019, 31, 4222-4227
Wu, C.; Chen, C.; Tao, L.; Ding, X.; Zheng, M.; Li, H.; Li, G.; Lu, H.; Cheng, M. J. Energy Chem. 2020, 43, 98-103.
Fang, L.; Zheng, A.; Ren, M.; Xie, X.; Wang, P. ACS Appl. Mater. Interfaces, 2009, 11, 39001-39009.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2021-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明