博碩士論文 108324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.73.79
姓名 許哲瑜(Jhe-Yu Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藉由羊水幹細胞製備通用誘導多能幹細胞
(Universal human induced pluripotent stem cells prepared from amniotic fluid stem cells)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 每年有數百萬人由於出生缺陷、事故和疾病遭受組織和器官的損失或損害。多能幹細胞,如人類胚胎幹細胞(hESCs)或人類誘導多能幹細胞(hiPSCs),被認為是組織再生和醫學藥物工程的有前途的細胞來源,因為它們可以分化為任何類型的細胞。然而,移植細胞的組織相容性仍然是其臨床應用的主要挑戰,其中第一型人類白血球抗原類(HLA-A、-B、-C)分子是免疫反應的主要介質。除此之外,產生成熟的人類誘導多能幹細胞需要花費很長時間,而且需要驗證其沒有基因異常、沒有被病毒或其他病原體污染,這導致從每位患者的體細胞中生成專屬患者之人類多能幹細胞治療成本十分高昂,過程費時耗力。另一方面,在移植來自這些 人類多能幹細胞的分化細胞後,通常不會產生與免疫原性相關的問題。因此,有必要建立具有各種人類白血球抗原之幹細胞庫,以避免患者產生免疫反應。此篇論文中,我報告了從多種不同捐贈者的羊水中生成通用人類誘導多能幹細胞的方法,即使在分化成特定細胞後也不表達第一型及第二類人類白血球抗原,也可以避免使用到基因編輯之技術。除了第一型及第二類人類白血球抗原,還通過流式細胞術檢測了 PD-L1、HLA-G和CD 47等免疫調節因子在通用人類誘導多能幹細胞及其原始羊水幹細胞(hAFSCs),因為這些抗原理論上可以抑制免疫反應。即使用CD8+ T 細胞、自然殺傷細胞和巨噬細胞的同種異體單核細胞共同培養後,通用人類多能幹細胞及其分化細胞(人類間充質幹細胞)也能存活。此外,我研究了來自CD8+ T細胞和自然殺手細胞等免疫細胞對於通用人類多能幹細胞之特異免疫反應。通用人類多能幹細胞應適用於幹細胞治療,因為一支通用人類多能幹細胞理論上可治療任何患者。
摘要(英) Millions of people suffer from loss or damage of tissue and organ every year due to birth defect, accident, and disease. Pluripotent stem cells (PSCs) such as human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs), are considered a promising cell source for tissue regeneration and medicine engineering, because they can differentiate into any type of cell lineages. However, histocompatibility of the transplanted cells remains a major challenge to their clinical application where human leukocyte antigen (HLA) class Ia (HLA-A, -B, -C) molecules are the primary mediators of immune reaction. Nevertheless, it takes long time to generate mature hiPSCs, and hiPSCs require to be verified that there is no gene abnormality and no contamination with viruses or other pathogens, which leads to a high cost of hiPSCs therapy, with laborious and time-consuming processes to generate patient-specific hiPSCs from somatic cells of each patient. On the other hand, the hiPSCs derived from each patient do not generate immunogenicity-related problems in general after the transplantation of differentiated cells from these hiPSCs. Consequently, it is necessary to establish patient-specific stem cell line or stem cells bank having specific HLA to avoid immune response of the patients. Here I report generation method of universal hiPSCs from multiple sources of human amniotic fluids without gene editing, which do not express HLA class Ia and class II even after their differentiation. Beside the HLA-Ia and II expression, immunomodulatory factors such as PD-L1, HLA-G, and CD 47 were also evaluated for universal hiPSCs and their original source cells of amniotic fluid stem cells by flow cytometry, because these antigens could suppress the immune reaction theoretically. The universal hiPSCs and their differentiated cells (human mesenchymal stem cells) survived even after treatment with allogenic mononuclear cells containing cytotoxic CD8+ T cells, natural killer cells, and macrophages. Additionally, I investigated the specific immune response of universal hiPSCs from immune cells such as CD8+ T cells and Natural Killer (NK) cells. Universal hiPSCs (mix) should be suitable for stem cell therapy, because universal hiPSCs can theoretically be used to treat any patients using only one cell line.
關鍵字(中) ★ 通用多能幹細胞 關鍵字(英)
論文目次 Abstract i
摘要 iii
Index of Content iv
Index of Figure vi
Index of Table x
Chapter 1 Introduction 1
1-1 Human Pluripotent Stem Cells 1
1-1-1 Human Embryonic Stem Cells 1
1-1-2 Human Induced Pluripotent Stem Cells 2
1-1-3 hPSC for Therapeutic Application in Future 6
1-2 Human Mesenchymal Stem Cells 9
1-2-1 Human Amniotic Fluid Stem Cells (hAFSCs) 10
1-3 The Substrates for hPSCs Cultivation 14
1-4 Human Peripheral Blood Mononuclear Cells 17
1-5 Immune System 19
1-5-1 Innate Immune System 20
1-5-2 Adaptive Immune System 21
1-6 Universal hiPSCs 23
1-7 Goal of this Project 26
Chapter 2 Material and Methods 27
2-1 Experimental Materials 27
2-1-1 Cell Source for Cultivation 27
2-1-2 ECM-coated Dishes for Cell Culture 31
2-1-3 Differentiation Medium 31
2-1-4 Characterization of Stem Cells 35
2-2 Experimental Instruments 39
2-3 Experimental Methods 40
2-3-1 Preparation of the cell culture medium and buffer solution 40
2-3-2 Generation and extraction of stem cell lines 42
2-3-3 Expansion and passage of stem cells 45
2-3-4 Cell number and seeding density 47
2-3-5 Isolation of allogenic mononuclear cells 48
2-3-6 Live and Dead staining 51
2-3-7 Lactic dehydrogenase (LDH) cytotoxicity assay 51
2-3-8 Mesenchymal stem cells differentiation 52
2-3-9 Flow cytometry measurements 53
2-3-10 Immunofluorescence staining 54
2-3-11 Embryonic body formation 55
Chapter 3 Results and Discussion 57
3-1 PD-L1, HLA-G, and CD47 expression of several human stem cells and colon cancer cells 57
3-2 Cultivation of single and mixing hAFSCs 59
3-2-1 The morphology of single and mixing hAFSCs 60
3-2-2 Identification of the hAFSCs from surface marker analysis using flow cytometry 62
3-3 Reprogramming and cultivation of hAFSCs-derived hiPSCs 65
3-3-1 Generation and isolation of hAFSCs-derived hiPSCs 65
3-3-2 Pluripotency analysis of hAFSCs-derived hiPSCs 67
3-4 The tendency of immunomodulatory factors expression and evaluation of the immunogenic reaction using mononuclear cells 69
3-4-1 HLA class Ia, class II, PD-L1, HLA-G, and CD47 expression of hESCs, hiPSCs, hAFSCs, and universal hiPSCs 70
3-4-2 Evaluation of the immunogenic reaction of universal hiPSCs using allogeneic mononuclear cells 75
3-5 Universal hiPSC differentiation into mesenchymal stem cells (MSCs) 76
3-5-1 Allogenic mononuclear cells co-cultivation with hMSCs-derived from hESCs-H9 and universal hiPSCs-mix 4 78
3-5-2 HLA class Ia, class II, PD-L1, HLA-G, and CD47 expression of universal hiPSCs derived hMSCs 79
Chapter 4 Conclusion 81
Reference 82
Supplementary data 89
參考文獻 1. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
2. Sato, N., et al., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med, 2004. 10(1): p. 55-63.
3. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 2000. 6(2): p. 88-95.
4. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J, 2015. 13: p. 75-84.
5. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001. 19(3): p. 193-204.
6. Bar-Nur, O., et al., Epigenetic Memory and Preferential Lineage-Specific Differentiation in Induced Pluripotent Stem Cells Derived from Human Pancreatic Islet Beta Cells. Cell Stem Cell, 2011. 9(1): p. 17-23.
7. Sugawara, T., et al., Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Res Ther, 2012. 3(2): p. 8.
8. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
9. Mitalipova, M., et al., Human embryonic stem cell lines derived from discarded embryos. Stem Cells, 2003. 21(5): p. 521-6.
10. Stojkovic, M., et al., Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells, 2004. 22(5): p. 790-7.
11. Robertson, J.A., Human embryonic stem cell research: ethical and legal issues. Nat Rev Genet, 2001. 2(1): p. 74-8.
12. de Wert, G. and C. Mummery, Human embryonic stem cells: research, ethics and policy. Hum Reprod, 2003. 18(4): p. 672-82.
13. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
14. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
15. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
16. Beers, J., et al., A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep, 2015. 5: p. 11319.
17. Bahmad, H., et al., Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci, 2017. 10: p. 50.
18. Saha, K. and R. Jaenisch, Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 2009. 5(6): p. 584-95.
19. Huang, C.Y., et al., Human iPSC banking: barriers and opportunities. J Biomed Sci, 2019. 26(1): p. 87.
20. Rao, M.S. and N. Malik, Assessing iPSC reprogramming methods for their suitability in translational medicine. J Cell Biochem, 2012. 113(10): p. 3061-8.
21. Connolly, J.B., Lentiviruses in gene therapy clinical research. Gene Ther, 2002. 9(24): p. 1730-4.
22. Zheng, C.-X., et al., Lentiviral Vectors and Adeno-Associated Virus Vectors: Useful Tools for Gene Transfer in Pain Research. The Anatomical Record, 2018. 301(5): p. 825-836.
23. Nishimura, K., et al., Development of Defective and Persistent Sendai Virus Vector. Journal of Biological Chemistry, 2011. 286(6): p. 4760-4771.
24. Beers, J., et al., A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Scientific Reports, 2015. 5(1): p. 11319.
25. Hanna, J., et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007. 318(5858): p. 1920-3.
26. Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009. 457(7227): p. 277-280.
27. Si-Tayeb, K., et al., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 2010. 51(1): p. 297-305.
28. Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther, 2007. 82(3): p. 252-64.
29. Selvaraj, S. and R. Perlingeiro, Induced Pluripotent Stem Cells for Neuromuscular Diseases: Potential for Disease Modeling, Drug Screening, and Regenerative Medicine. 2018.
30. Shi, C., et al., Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res, 2006. 133(2): p. 185-92.
31. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov, 2015. 14(10): p. 681-92.
32. Stagg, J. and J. Galipeau, Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med, 2013. 13(5): p. 856-67.
33. Markey, K.A., K.P. MacDonald, and G.R. Hill, The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood, 2014. 124(3): p. 354-62.
34. Mahr, B., et al., Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol, 2017. 8: p. 1762.
35. Elsner, H.A. and R. Blasczyk, Immunogenetics of HLA null alleles: implications for blood stem cell transplantation. Tissue Antigens, 2004. 64(6): p. 687-695.
36. Socié, G. and B.R. Blazar, Acute graft-versus-host disease: from the bench to the bedside. Blood, 2009. 114(20): p. 4327-4336.
37. Chang, Y.J., X.Y. Zhao, and X.J. Huang, Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease. Frontiers in Immunology, 2018. 9: p. 17.
38. Schneidawind, D., A. Pierini, and R.S. Negrin, Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood, 2013. 122(18): p. 3116-3121.
39. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-317.
40. Ringden, O., et al., Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 2006. 81(10): p. 1390-1397.
41. Stolzing, A., et al., Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms of Ageing and Development, 2008. 129(3): p. 163-173.
42. Phinney, D.G. and D.J. Prockop, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells, 2007. 25(11): p. 2896-902.
43. Bobis, S., D. Jarocha, and M. Majka, Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol, 2006. 44(4): p. 215-30.
44. Zhao, S., et al., Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev, 2010. 19(5): p. 607-14.
45. Chamberlain, G., et al., Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 2007. 25(11): p. 2739-2749.
46. Macrin, D., et al., Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep, 2017. 13(6): p. 741-756.
47. Ullah, I., Raghavendra, and Gyu, Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 2015. 35(2): p. 1-18.
48. Kobolak, J., et al., Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016. 99: p. 62-68.
49. Cananzi, M., A. Atala, and P. De Coppi, Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online, 2009. 18 Suppl 1: p. 17-27.
50. Shaw, S.W.S., A.L. David, and P. De Coppi, Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Current opinion in obstetrics & gynecology, 2011. 23(2): p. 109-116.
51. Di Trapani, M., et al., Immune Regulatory Properties of CD117pos Amniotic Fluid Stem Cells Vary According to Gestational Age. Stem Cells and Development, 2015. 24(1): p. 132-143.
52. Guillot, P.V., et al., Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 2007. 25(3): p. 646-54.
53. Delo, D.M., et al., Amniotic fluid and placental stem cells. Methods Enzymol, 2006. 419: p. 426-38.
54. Shaw, S.W.S., et al., Human amniotic fluid stem cells have better potential in early second trimester of pregnancy and can be reprogramed to iPS. Taiwanese Journal of Obstetrics and Gynecology, 2017. 56(6): p. 770-774.
55. Li, C., et al., Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Molecular Genetics, 2009. 18(22): p. 4340-4349.
56. Loukogeorgakis, S.P. and P. De Coppi, Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells, 2017. 35(7): p. 1663-1673.
57. Ramasamy, T.S., et al., Stem Cells Derived from Amniotic Fluid: A Potential Pluripotent-Like Cell Source for Cellular Therapy? Curr Stem Cell Res Ther, 2018. 13(4): p. 252-264.
58. Candido, A.C., et al., Implications of iodine deficiency by gestational trimester: a systematic review. Archives of Endocrinology and Metabolism, 2020.
59. Gholizadeh-Ghaleh Aziz, S., et al., An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artif Cells Nanomed Biotechnol, 2017. 45(4): p. 765-774.
60. Moschidou, D., et al., Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther, 2012. 20(10): p. 1953-67.
61. Skardal, A., et al., Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater, 2013. 17: p. 307-16.
62. Meredith, J.E., B. Fazeli, and M.A. Schwartz, The extracellular matrix as a cell survival factor. Molecular Biology of the Cell, 1993. 4(9): p. 953-961.
63. Adil, M.M. and D.V. Schaffer, Expansion of human pluripotent stem cells. Current Opinion in Chemical Engineering, 2017. 15: p. 24-35.
64. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
65. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
66. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
67. Higuchi, A., et al., Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews, 2012. 112(8): p. 4507-4540.
68. Giancotti, F.G., Integrin Signaling. Science, 1999. 285(5430): p. 1028-1033.
69. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
70. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
71. Ruoslahti, E., RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 1996. 12: p. 697-715.
72. Kapp, T.G., et al., A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Scientific Reports, 2017. 7(1): p. 39805.
73. Kleiveland, C.R., Peripheral Blood Mononuclear Cells. 2015, Springer International Publishing. p. 161-167.
74. Saumet, A., et al., Comparison of three methods for peripheral blood mononuclear cells separation. Therapeutic Drug Monitoring, 2011. 33(4): p. 554-554.
75. Thomas, G.D., et al., Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arterioscler Thromb Vasc Biol, 2017. 37(8): p. 1548-1558.
76. Boardman, D.A., et al., Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am J Transplant, 2017. 17(4): p. 931-943.
77. Fujii, S., et al., Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells, 2018. 36(3): p. 434-445.
78. Acosta Davila, J.A. and A. Hernandez De Los Rios, An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma gondii and Other Apicomplexan Parasites. Frontiers in Cellular and Infection Microbiology, 2019. 9(24).
79. Malim, M.R. and F.A. Halim, IMMUNOLOGY AND ARTIFICIAL IMMUNE SYSTEMS. International Journal on Artificial Intelligence Tools, 2012. 21(6): p. 27.
80. Dranoff, G., Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 2004. 4(1): p. 11-22.
81. Round, J.L. and S.K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009. 9(5): p. 313-323.
82. Ilan, Y., Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clinical & Translational Immunology, 2016. 5: p. 11.
83. Usharauli, D., Chronic infection and the origin of adaptive immune system. Medical Hypotheses, 2010. 75(2): p. 241-243.
84. Janeway, C.A., Jr. and R. Medzhitov, Innate immune recognition. Annu Rev Immunol, 2002. 20: p. 197-216.
85. Jones, J.D.G. and J.L. Dangl, The plant immune system. Nature, 2006. 444(7117): p. 323-329.
86. Turvey, S.E. and D.H. Broide, Innate immunity. Journal of Allergy and Clinical Immunology, 2010. 125(2): p. S24-S32.
87. Flajnik, M.F. and M. Kasahara, Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics, 2010. 11(1): p. 47-59.
88. Luo, W.J., et al., An adaptive self-tolerant algorithm for hardware immune system, in Evolvable Systems: From Biology to Hardware, J.M. Moreno, J. Madrenas, and J. Cosp, Editors. 2005, Springer-Verlag Berlin: Berlin. p. 1-11.
89. Ricklin, D., et al., Complement: a key system for immune surveillance and homeostasis. Nature Immunology, 2010. 11(9): p. 785-797.
90. Cox, R.J. and K.A. Brokstad, Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology, 2020. 20(10): p. 581-582.
91. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol, 2016. 17(3): p. 194-200.
92. Wattanapanitch, M., Recent Updates on Induced Pluripotent Stem Cells in Hematological Disorders. Stem Cells International, 2019. 2019: p. 5171032.
93. Mattapally, S., et al., Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy. J Am Heart Assoc, 2018. 7(23): p. e010239.
94. Han, X., et al., Generation of hypoimmunogenic human pluripotent stem cells. Proceedings of the National Academy of Sciences, 2019. 116(21): p. 10441-10446.
95. Wang, D., et al., Targeted Disruption of the β2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. Stem Cells Transl Med, 2015. 4(10): p. 1234-45.
96. Malik, N.N., et al., Engineering strategies for generating hypoimmunogenic cells with high clinical and commercial value. Regenerative Medicine, 2019. 14(11): p. 983-989.
97. Norbnop, P., et al., Generation and characterization of HLA-universal platelets derived from induced pluripotent stem cells. Scientific Reports, 2020. 10.
98. Ye, Q., et al., Generation of universal and hypoimmunogenic human pluripotent stem cells. Cell Prolif, 2020. 53(12): p. e12946.
99. Xu, H., et al., Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell, 2019. 24(4): p. 566-578.e7.
100. Sung, T.C., et al., Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials, 2020. 230: p. 119638.
101. Li, E., et al., Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in a Complete Serum-free Condition. Int J Biol Sci, 2018. 14(13): p. 1901-1909.
102. Shevde, N.K. and A.A. Mael, Techniques in embryoid body formation from human pluripotent stem cells, in Basic Cell Culture Protocols. 2013, Springer. p. 535-546.
103. Kurosawa, H., Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of bioscience and bioengineering, 2007. 103(5): p. 389-398.
104. Sung, T.C., et al., Transient characteristics of universal cells on human-induced pluripotent stem cells and their differentiated cells derived from foetal stem cells with mixed donor sources. Cell Prolif, 2021. 54(3): p. e12995.
105. Davydova, D., et al., Cell phenotypes in human amniotic fluid. Acta Naturae (англоязычная версия), 2009. 1(2 (2)).
106. Roubelakis, M.G., O. Trohatou, and N.P. Anagnou, Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem cells international, 2012. 2012.
107. Li, L., et al., Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer. PloS one, 2015. 10(4).
108. Rebmann, V., et al., Detection of soluble HLA-G molecules in plasma and amniotic fluid. Tissue Antigens, 1999. 53(1): p. 14-22.
109. Rong, Z., et al., An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell, 2014. 14(1): p. 121-30.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明