博碩士論文 108324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.223.213.177
姓名 龍昱丞(Yu-Chen Lung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Li7La3Zr2O12與聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯 複合型電解質應用於類固態鋰離子電池之研究
(Development of Li7La3Zr2O12 and Poly (vinylidene fluoride)- hexafluoropropene/ Poly (propylene carbonate) Composite Electrolyte for Quasi-Solid-State Lithium Batteries)
相關論文
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 無機填料於聚偏氟乙烯-六氟丙烯共聚物/聚碳酸亞丙酯複合型固 態電解質於鋰電池之應用
★ 運用芳香化合物與鋰金屬之化學預鋰化方法對鋰離子電池負極影響★ 以雙深共熔溶劑系統對廢棄鋰離子電池進行選擇性回收及優化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-9以後開放)
摘要(中) 在本研究中透過聚碳酸亞丙酯(Poly (propylene carbonate),PPC)對於聚偏氟乙烯-六氟丙烯共聚物(Poly (vinylidene fluoride)-hexafluoropropene,PVDF-HFP)進行混摻,並添加少量的離子液體和Li7La3Zr2O12(LLZO)形成複合型類固態電解質,並優化目前已知的製程條件,建立出符合室溫、高能量密度系統、高穩定性,以及優異充放電比電容量之平台。由結果可以得知PVDF-HFP在混摻適量的PPC後,應用於NCM811正極系統時,在室溫下有著優異的低速比電容量(214.36mAh/g @ 25mA/g)、高離子導通率(6.20*10-4 S/cm) ,且具有高循環穩定性(~99%);在後續的研究中在高分子固態電解質中添加不同參雜條件之LLZO粉末可以發現有著明顯的差異,建立有效討論LLZO粉末優勢之平台。 藉由此複合性固態電解質,接續討論在一次燒結的條件下(900℃,10小時)不同額外碳酸鋰添加量之LLZO(Al)的差異,可發現當10wt.%額外裡添加時,有著最佳的鋰濃度可以達到優異的低速比電容量(231.03mAh/g @ 25mA/g)、高離子導通率(8.35*10-4 S/cm),以及高循環穩定性(~99%);最後討論不同比例的陶瓷粉末在複合型固態電解質中的影響,而10wt%的陶瓷粉末添加量為最優異。在本研究中複合型固態電解質有著卓越的性質,證實了PVDF-HFP混摻改質以及LLZO優化添加有助於全固態電解質前景應用。
摘要(英) As green energy are becoming more and more important, many countries have begun to develop energy storage systems. Despite the advantages that Lithium-ion batteries possess due to its high energy density, safety issues are still to be considered. Compared to conventional organic liquid electrolytes, hybrid solid state electrolytes (HSSE) have better mechanical properties, non-flammability and high ionic conductivity. In this work, Polypropylene carbonate (PPC) was used to blend with Poly (vinylidene fluoride)-hexafluoropropene (PVDF- also A small amount of ionic liquid and LLZO(Li7La3Zr2O12)、 LLZAO(Li6.25La3Zr2Al0.25O12) and LLZGO(Li6.25La3Zr2Ga0.25O12) were added to form a composite solid-state electrolyte. The PVDF-HFP/PPC blend matrix shows a lower crystallinity and a high thermostability. The electrolyte consisting of this PVDF-HFP/PPC blend matrix and 10 wt% LLZO displayed improved ionic conductivity(8.35*10-4 S/cm) and superior compatibility. Besides, the NCM 811|| Li battery with this HSSE combination delivered a good specific capacitance(229.55mAh/g) and cycling stability(retention 78.12% for 100 cycles @100mA/g). Hence, the preparedcomposite HSSE has great potential for developing high-performance solid-state lithium ion battery.
關鍵字(中) ★ 鋰電池
★ 固態電解質
★ 石柳石型電解質
關鍵字(英) ★ lithium battery
★ Solid state electrolyte
★ Garnet type electrolyte
論文目次 摘要 ........................................................................................................................ i
Astract .................................................................................................................. iii
目錄 ....................................................................................................................... v
圖目錄 .................................................................................................................. ix
表目錄 ................................................................................................................ xiv
第一章 緒論 ...........................................................................................- 1 -
1-1 前言 ....................................................................................................... - 1 -
1-2 研究動機 ............................................................................................... - 2 -
第二章 文獻回顧 ...................................................................................- 4 -
2-1高分子固態電解質 ................................................................................ - 4 -
2-1-1高分子離子傳導機制 .................................................................... - 5 -
2-1-2 PVDF-HFP 系統介紹 ..................................................................... - 7 -
2-1-3 PVDF-HDP混摻PPC改質 ............................................................ - 9 -
2-2 無機陶瓷固態電解質 ......................................................................... - 21 -
2-2-1 石柳石型(Garnet type)固態電解質- Li7La3Zr2O12 ...................... - 23 -
2-2-2 Li7La3Zr2O12元素摻雜 .................................................................. - 30 -
vi
2-2-3 Li7La3Zr2O12化學與電化學穩定性 .............................................. - 33 -
第三章 實驗方法 .......................................................................................... - 35 -
3-1 實驗藥品 .............................................................................................. - 35 -
3-2 實驗設備 .............................................................................................. - 36 -
3-3 實驗步驟 .............................................................................................. - 37 -
3-3-1 Li7La3Zr2O12與摻雜Li7La3Zr2O12製備 ........................................ - 37 -
3-3-2 高分子固態電解質層製備 ........................................................... - 37 -
3-3-3 複合型固態電解質層製備 ........................................................... - 38 -
3-3-4 複合電極製備 ............................................................................... - 38 -
3-3-5 離子液體配置 ............................................................................... - 39 -
3-3-6 鈕扣電池組裝 ............................................................................... - 39 -
3-4 材料分析與鑑定.................................................................................. - 40 -
3-4-1 粉末X光繞射儀 (Powder X-ray diffraction, PXRD) ................ - 40 -
3-4-2 冷場發射掃描式電子顯微鏡(The field-emission scanning electron microscope, FE-SEM) .............................................................................. - 40 -
3-4-3 能量散射X射線譜(Energy-dispersive X-ray spectroscopy,EDS) ...................................................................................................... - 40 -
vii
3-4-4 熱重分析 (Thermogravimetric analysis, TGA) ........................... - 40 -
3-4-5 感應耦合電漿放射光譜儀(ICP-OES) ......................................... - 41 -
3-5 電化學性質分析與鑑定 ..................................................................... - 41 -
3-5-1 計時電位法 (Chronopotentimetry) .............................................. - 41 -
3-5-2 交流阻抗 (Electrochemical impedance spectroscopy) ................ - 41 -
3-5-3 循環壽命測試 (The Cycling performance) ................................. - 42 -
3-6 實驗流程圖 ......................................................................................... - 43 -
第四章 結果與討論 ...................................................................................... - 44 -
4-1 PVDF-HFP/PPC混摻電解質添加不同氧化物陶瓷粉末應用於LiNi0.8Co0.1Mn0.1O2之分析 ........................................................................ - 44 -
4-1-1 LiNi0.8Co0.1Mn0.1O2分析與鑑定 ................................................... - 44 -
4-1-2 氧化物陶瓷粉末分析與鑑定 ....................................................... - 46 -
4-1-3 複合型固態電解質分析 ............................................................... - 49 -
4-1-4 定電流充放電分析 ....................................................................... - 65 -
4-1-5 交流阻抗分析 ............................................................................. - 72 -
4-1-6 循環壽命分析 ............................................................................... - 75 -
4-2不同額外鋰含量的LLZAO對於電池性能之影響 ........................... - 77 -
viii
4-2-1 氧化物陶瓷粉末分析 ................................................................... - 77 -
4-2-2 ICP-OES定量分析 ........................................................................ - 81 -
4-2-3 複合型固態電解質分析 ............................................................... - 83 -
4-2-4 定電流充放電分析 ....................................................................... - 95 -
4-2-5 交流阻抗分析 ............................................................................. - 101 -
4-2-6 循環壽命分析 ............................................................................. - 103 -
4-3 複合型固態電解質中不同比例LLZO對於電池性能之影響 ....... - 105 -
4-3-1 複合型固態電解質分析 ............................................................. - 106 -
4-3-2 定電流充放電分析 ..................................................................... - 118 -
4-3-3 交流阻抗分析 ............................................................................. - 123 -
第五章 結論與未來展望 ............................................................................ - 125 -
第六章 參考文獻 ........................................................................................ - 127 -
參考文獻 [1] Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411), 294-303.
[2] Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: a battery of choices. Science, 334(6058), 928-935.
[3] Pillot, C. (2017). Lithium ion battery raw material supply & demand 2016–2025. Paper presented at the Proceedings of the Advanced Automotive Battery Conference, Mainz, Germany.
[4] Liu, K., Liu, Y., Lin, D., Pei, A., & Cui, Y. (2018). Materials for lithium-ion battery safety. Science advances, 4(6), eaas9820.
[5] Fan, L., Wei, S., Li, S., Li, Q., & Lu, Y. (2018). Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials, 8(11), 1702657.
[6] Wright, P. V. (1975). Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal, 7(5), 319-327.
[7] Armand, M. (1994). The history of polymer electrolytes. Solid State Ionics, 69(3-4), 309-319.
[8] Zhang, Q., Liu, K., Ding, F., & Liu, X. (2017). Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 10(12), 4139-4174.
[9] Savoie, B. M., Webb, M. A., & Miller III, T. F. (2017). Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. The journal of physical chemistry letters, 8(3), 641-646.
[10] Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., . . . Liu, X. (2019). Review on polymer-based composite electrolytes for lithium batteries. Frontiers in chemistry, 7, 522.
[11] Golodnitsky, D., Strauss, E., Peled, E., & Greenbaum, S. (2015). On order and disorder in polymer electrolytes. Journal of The Electrochemical Society, 162(14), A2551.
[12] White, R. P., & Lipson, J. E. (2016). Polymer free volume and its connection to the glass transition. Macromolecules, 49(11), 3987-4007.
[13] Das, D., Chandrasekaran, A., Venkatram, S., & Ramprasad, R. (2018). Effect of crystallinity on Li adsorption in polyethylene oxide. Chemistry of Materials, 30(24), 8804-8810.
[14] Liu, W., Zhang, X., Wu, F., & Xiang, Y. (2017). A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. Paper presented at the IOP Conference Series: Materials Science and Engineering.
[15] Zhang, Y., Yang, B., Li, K., Hou, D., Zhao, C., & Wang, J. (2017). Electrospun
- 128 -
porous poly (tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC advances, 7(89), 56183-56193.
[16] Barbosa, J. C., Dias, J. P., Lanceros-Méndez, S., & Costa, C. M. (2018). Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes, 8(3), 45.
[17] Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J., & Wendsjö, Å. (2001). Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer, 42(4), 1407-1416.
[18] Zhang, J., Sun, B., Huang, X., Chen, S., & Wang, G. (2014). Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific reports, 4(1), 1-7.
[19] Cao, J., Wang, L., He, X., Fang, M., Gao, J., Li, J., . . . Wang, J. (2013). In situ prepared nano-crystalline TiO 2–poly (methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 1(19), 5955-5961.
[20] Liang, Y., Xia, Y., Zhang, S., Wang, X., Xia, X., Gu, C., . . . Tu, J. (2019). A preeminent gel blending polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene)-poly (propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta, 296, 1064-1069.
[21] Ramesh, S., Liew, C.-W., Morris, E., & Durairaj, R. (2010). Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochimica Acta, 511(1-2), 140-146.
[22] Zhang, J., Zhao, J., Yue, L., Wang, Q., Chai, J., Liu, Z., . . . Cui, G. (2015). Safety‐reinforced poly (propylene carbonate)‐based All‐solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries. Advanced Energy Materials, 5(24), 1501082.
[23] Han, D., Guo, Z., Chen, S., Xiao, M., Peng, X., Wang, S., & Meng, Y. (2018). Enhanced properties of biodegradable poly (propylene carbonate)/polyvinyl formal blends by melting compounding. Polymers, 10(7), 771.
[24] Zhang, J., Zang, X., Wen, H., Dong, T., Chai, J., Li, Y., . . . Ma, J. (2017). High-voltage and free-standing poly (propylene carbonate)/Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 5(10), 4940-4948.
[25] Wang, C., Zhang, H., Li, J., Chai, J., Dong, S., & Cui, G. (2018). The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources, 397, 157-161.
[26] Sun, B., Xu, C., Mindemark, J., Gustafsson, T., Edström, K., & Brandell, D. (2015).
- 129 -
At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. Journal of Materials Chemistry A, 3(26), 13994-14000.
[27] Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., . . . Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798.
[28] Jing, M.-x., Yang, H., Chen, H., Hua, S., Ju, B.-w., Zhou, Q., . . . Qin, S.-b. (2019). Effects of gelation behavior of PPC-based electrolyte on electrochemical performance of solid state lithium battery. SN Applied Sciences, 1(3), 205.
[29] Zhang, J., Yang, J., Dong, T., Zhang, M., Chai, J., Dong, S., . . . Cui, G. (2018). Aliphatic Polycarbonate‐Based Solid‐State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. Small, 14(36), 1800821.
[30] Zhou, Q., Zhang, J., & Cui, G. (2018). Rigid–Flexible Coupling Polymer Electrolytes toward High‐Energy Lithium Batteries. Macromolecular Materials and Engineering, 303(11), 1800337.
[31] Zhu, L., Zhu, P., Yao, S., Shen, X., & Tu, F. (2019). High‐performance solid PEO/PPC/LLTO‐nanowires polymer composite electrolyte for solid‐state lithium battery. International Journal of Energy Research, 43(9), 4854-4866.
[32] Zhang, J., Yue, L., Hu, P., Liu, Z., Qin, B., Zhang, B., . . . Zhou, X. (2014). Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific reports, 4(1), 1-7.
[33] Song, J., Ryou, M.-H., Son, B., Lee, J.-N., Lee, D. J., Lee, Y. M., . . . Park, J.-K. (2012). Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochimica Acta, 85, 524-530.
[34] Cho, T.-H., Tanaka, M., Ohnishi, H., Kondo, Y., Yoshikazu, M., Nakamura, T., & Sakai, T. (2010). Composite nonwoven separator for lithium-ion battery: Development and characterization. Journal of Power Sources, 195(13), 4272-4277.
[35] Wang, D., Yu, J., Zhang, J., He, J., & Zhang, J. (2013). Transparent bionanocomposites with improved properties from poly (propylene carbonate)(PPC) and cellulose nanowhiskers (CNWs). Composites Science and Technology, 85, 83-89.
[36] Zhao, J., Zhang, J., Hu, P., Ma, J., Wang, X., Yue, L., . . . Zhou, X. (2016). A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochimica Acta, 188, 23-30.
[37] Zhou, D., Zhou, R., Chen, C., Yee, W.-A., Kong, J., Ding, G., & Lu, X. (2013). Non-volatile polymer electrolyte based on poly (propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. The Journal of Physical Chemistry B, 117(25), 7783-7789.
- 130 -
[38] Bachman, J. C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S. F., . . . Lamp, P. (2016). Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 116(1), 140-162.
[39] Wang, C., Fu, K., Kammampata, S. P., McOwen, D. W., Samson, A. J., Zhang, L., . . . Mo, Y. (2020). Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 120(10), 4257-4300.
[40] Thangadurai, V., Kaack, H., & Weppner, W. J. (2003). Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta). Journal of the American Ceramic Society, 86(3), 437-440.
[41] Zhu, Y., He, X., & Mo, Y. (2015). Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS applied materials & interfaces, 7(42), 23685-23693.
[42] Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., & Schlosser, M. (2008). Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie, 120(4), 767-770.
[43] Kim, Y., Yoo, A., Schmidt, R., Sharafi, A., Lee, H., Wolfenstine, J., & Sakamoto, J. (2016). Electrochemical stability of Li6. 5La3Zr1. 5M0. 5O12 (M= Nb or Ta) against metallic lithium. Frontiers in Energy Research, 4, 20.
[44] Thangadurai, V., Narayanan, S., & Pinzaru, D. (2014). Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 43(13), 4714-4727.
[45] Wells, A. F. (2012). Structural inorganic chemistry: Oxford university press.
[46] O’Callaghan, M. P., Powell, A. S., Titman, J. J., Chen, G. Z., & Cussen, E. J. (2008). Switching on fast lithium ion conductivity in garnets: the structure and transport properties of Li3+ x Nd3Te2− x Sb x O12. Chemistry of Materials, 20(6), 2360-2369.
[47] O′Callaghan, M. P., Lynham, D. R., Cussen, E. J., & Chen, G. Z. (2006). Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln= Y, Pr, Nd, Sm− Lu). Chemistry of Materials, 18(19), 4681-4689.
[48] Murugan, R., Thangadurai, V., & Weppner, W. (2007). Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition, 46(41), 7778-7781.
[49] Thangadurai, V., & Weppner, W. (2005). Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet‐like oxides for fast lithium ion conduction. Advanced Functional Materials, 15(1), 107-112.
[50] Li, Y., Han, J.-T., Wang, C.-A., Xie, H., & Goodenough, J. B. (2012). Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 22(30), 15357-15361.
[51] Awaka, J., Kijima, N., Hayakawa, H., & Akimoto, J. (2009). Synthesis and structure
- 131 -
analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry, 182(8), 2046-2052.
[52] Narayanan, S., Hitz, G. T., Wachsman, E. D., & Thangadurai, V. (2015). Effect of excess Li on the structural and electrical properties of garnet-type Li6La3Ta1. 5Y0. 5O12. Journal of The Electrochemical Society, 162(9), A1772.
[53] Murugan, R., Weppner, W., Schmid-Beurmann, P., & Thangadurai, V. (2007). Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Materials Science and Engineering: B, 143(1-3), 14-20.
[54] He, M., Cui, Z., Chen, C., Li, Y., & Guo, X. (2018). Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. Journal of Materials Chemistry A, 6(24), 11463-11470.
[55] Ramzy, A., & Thangadurai, V. (2010). Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. ACS applied materials & interfaces, 2(2), 385-390.
[56] Zeier, W. G. (2014). Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Transactions, 43(43), 16133-16138.
[57] Awaka, J., Takashima, A., Kataoka, K., Kijima, N., Idemoto, Y., & Akimoto, J. (2011). Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chemistry letters, 40(1), 60-62.
[58] Wagner, R., Redhammer, G. n. J., Rettenwander, D., Senyshyn, A., Schmidt, W., Wilkening, M., & Amthauer, G. (2016). Crystal structure of garnet-related Li-ion conductor Li7–3 x Ga x La3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chemistry of Materials, 28(6), 1861-1871.
[59] Han, J., Zhu, J., Li, Y., Yu, X., Wang, S., Wu, G., . . . Momma, K. (2012). Experimental visualization of lithium conduction pathways in garnet-type Li 7 La 3 Zr 2 O 12. Chemical Communications, 48(79), 9840-9842.
[60] Baral, A. K., Narayanan, S., Ramezanipour, F., & Thangadurai, V. (2014). Evaluation of fundamental transport properties of Li-excess garnet-type Li 5+ 2x La 3 Ta 2− x Y x O 12 (x= 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Physical Chemistry Chemical Physics, 16(23), 11356-11365.
[61] Samson, A. J., Hofstetter, K., Bag, S., & Thangadurai, V. (2019). A bird′s-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science, 12(10), 2957-2975.
[62] Xu, M., Ding, J., & Ma, E. (2012). One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor. Applied Physics Letters, 101(3), 031901.
- 132 -
[63] Logéat, A., Köhler, T., Eisele, U., Stiaszny, B., Harzer, A., Tovar, M., . . . Kozinsky, B. (2012). From order to disorder: The structure of lithium-conducting garnets Li7− xLa3TaxZr2− xO12 (x= 0–2). Solid State Ionics, 206, 33-38.
[64] Li, Y., Han, J.-T., Wang, C.-A., Vogel, S. C., Xie, H., Xu, M., & Goodenough, J. B. (2012). Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. Journal of Power Sources, 209, 278-281.
[65] Il’ina, E., Andreev, O., Antonov, B., & Batalov, N. (2012). Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate–nitrate methods. Journal of Power Sources, 201, 169-173.
[66] Rangasamy, E., Wolfenstine, J., Allen, J., & Sakamoto, J. (2013). The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7− xLa3− xAxZr2O12 garnet-based ceramic electrolyte. Journal of Power Sources, 230, 261-266.
[67] Geiger, C. A., Alekseev, E., Lazic, B., Fisch, M., Armbruster, T., Langner, R., . . . Weppner, W. (2011). Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry, 50(3), 1089-1097.
[68] Thompson, T., Sharafi, A., Johannes, M. D., Huq, A., Allen, J. L., Wolfenstine, J., & Sakamoto, J. (2015). A tale of two sites: on defining the carrier concentration in garnet‐based ionic conductors for advanced Li batteries. Advanced Energy Materials, 5(11), 1500096.
[69] Bernstein, N., Johannes, M., & Hoang, K. (2012). Origin of the structural phase transition in Li 7 La 3 Zr 2 O 12. Physical review letters, 109(20), 205702.
[70] Zhu, Y., He, X., & Mo, Y. (2016). First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A, 4(9), 3253-3266.
[71] Qin, S., Zhu, X., Jiang, Y., Ling, M. e., Hu, Z., & Zhu, J. (2018). Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Applied Physics Letters, 112(11), 113901.
[72] Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C., & Ceder, G. (2016). Interface stability in solid-state batteries. Chemistry of Materials, 28(1), 266-273.
[73] Han, F., Zhu, Y., He, X., Mo, Y., & Wang, C. (2016). Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Advanced Energy Materials, 6(8), 1501590.
[74] Urban, A., Seo, D.-H., & Ceder, G. (2016). Computational understanding of Li-ion batteries. npj Computational Materials, 2(1), 1-13.
[75] Hautier, G., Ong, S. P., Jain, A., Moore, C. J., & Ceder, G. (2012). Accuracy of density functional theory in predicting formation energies of ternary oxides from
- 133 -
binary oxides and its implication on phase stability. Physical Review B, 85(15), 155208.
[76] Liu, Y.-L. (2020). Development of Li1.5Al0.5Ti1.5(PO4)3 and Poly (vinylidene fluoride)-hexafluoropropene/Poly (methyl methacrylate) Composite Electrolyte for Quasi-Solid-State Lithium Batteries.
[77] Thompson, T., Wolfenstine, J., Allen, J. L., Johannes, M., Huq, A., David, I. N., & Sakamoto, J. (2014). Tetragonal vs. cubic phase stability in Al–free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO). Journal of Materials Chemistry A, 2(33), 13431-13436.
[78] Singh, V. K., & Singh, R. K. (2015). Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. Journal of Materials Chemistry C, 3(28), 7305-7318.
[79] Ma, X., Yu, J., & Wang, N. (2006). Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101.
指導教授 李岱洲 張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2021-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明