博碩士論文 107623020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.119.133.181
姓名 楊孟澤(Meng-Tse Yang)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 土星環塵埃在大氣與電動力學耦合下對土星大氣系統的影響
相關論文
★ 日冕拋射物質現象在太陽第23週期之統計研究★ 土星環粒子隨時間變化之表面溫度模擬
★ RHESSI觀測M型太陽閃焰的動態結構分析★ 太陽活動寧靜期日冕層影像與解析磁場模型之影像套疊與應用
★ 土衛八Iapetus的外球層模型★ 月球表面反射太陽風質子之粒子模擬
★ 土衛六-泰坦的大氣層密度和溫度的三維分佈★ 日冕物質拋射速度與緯度和太陽活動週期的關係
★ 隨季節變化之灶神星冰極模擬★ 藉由卡西尼太空船MIMI/LEMMS觀測資料分析土星高能電漿入射來源之統計
★ 土星環鄰近地區之帶電塵埃粒子動力學★ 直接模擬蒙地卡羅法於彗星之噴氣和塵埃噴流之應用
★ 克普勒任務觀測G型星超級閃焰的資料分析★ The Measurements of the Gas Density Distributions and Composition in the Water Plumes of Enceladus by the INMS Instrument on Cassini
★ 木星環系統帶電粒子動力學分析與 全球碰撞分布地圖--為JUNO任務預測★ 土衛六泰坦大氣的甲烷在土星系統的分佈
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土星上所謂的「環雨(Ring Rain)」現象的物理起源是來自帶電冰粒和/或水分子離子從環系統下降,這長期以來一直是一個難題。這是因為如果冰粒最初位於環平面上的圓形克卜勒軌道上,那麼從行星中心向北偏移且近乎是個磁偶極的磁場(Connerney et al.,1982)會對這些帶電塵埃產生南北不同的影響:會將環雨效應的墜落點限制在南半球。但是在卡西尼號任務大結局任務階段的塵埃測量卻檢測到北半球的塵埃的墜入(Hsu et al., 2018),這表明相應的塵埃粒子一定是從行星際流星體轟擊或是其他原因中獲得了垂直於環平面的顯著垂直速度(Ip et al.,2016 年)。也就是說,這些獲得了北上速度的塵埃粒子很大程度上就是北半球環雨的起源。但在過去的模擬結果中表明,獲得垂直北上速度的塵埃會因其各種不同條件(如:荷質比、垂直速度大小……等)而有包括但不僅限於北半球的落點(Liu and Ip, 2014)。在本篇中,我們將嘗試去模擬各種條件下的北上帶電塵埃的各種軌跡可能性,並分析討論這些塵埃對土星環雨以及土星大氣系統的影響。
摘要(英) The physical origin of the so-called "Ring Rain" phenomenon on Saturn comes from the falling of charged ice particles and/or water molecular ions from the ring system, which has been a problem for a long time. This is because if ice particles are initially located in a circular Kepler orbit on the plane of the ring, a magnetic field that is almost a magnetic dipole offset northward from the center of the planet (Connerney et al., 1982) will cause these charged dusts to have different results from northern and southern hemisphere: the falling point of the ring rain effect will be limited to the southern hemisphere. However, the dust measurement in the final stage of the Cassini mission detected the fall of dust in the northern hemisphere (Hsu et al., 2018), indicating that the corresponding dust particles must have been bombarded by interplanetary meteoroids or other reasons obtained a significant vertical velocity perpendicular to the ring plane (Ip et al., 2016). In other words, these dust particles that have obtained the northward velocity are largely the origin of the northern hemisphere′s ring rain. However, in the past simulation results (Liu and Ip, 2014), it has been shown that the dust that obtains the vertical northward velocity will include but not limited to the landing point in the northern hemisphere, due to various conditions (such as: charge-to-mass ratio, vertical velocity, etc). In this work, we will try to simulate the various trajectories of the northward charged dust under various conditions, and analyze and discuss the impact of these dust on Saturn′s ring rain and Saturn′s atmospheric system.
關鍵字(中) ★ 行星科學
★ 太陽系
★ 土星
★ 塵埃
★ 環雨
關鍵字(英) ★ Planetary science
★ Solar system
★ Saturn
★ Dust
★ Ring rain
論文目次 中文摘要....................................vi
英文摘要Abstract............................vii
致謝........................................viii
目錄........................................x
圖目錄......................................xii
表目錄......................................xiii
一、概述....................................1
1.1土星系統.................................1
1.1.2 土星磁場..............................2
1.1.3 土星環................................3
1.1.4 土星的衛星──塵埃的來源之一..............6
1.2環雨.....................................7
二、運動方程式...............................10
2.1簡述運動方程式............................10
2.2 勞倫茲力(Lorentz Force)................12
2.2.1 勞倫茲力──OTD磁場模型..................12
2.2.2 勞倫茲力──荷質比:.....................4
2.3 大氣分子的碰撞...........................18
2.3.1大氣分子的碰撞──碰撞模式.................18
2.3.2大氣分子的碰撞──碰撞機率.................20
2.3.3大氣分子的碰撞──大氣密度.................22
三、模擬結果.................................23
3.1塵埃的運動軌跡分析.........................23
3.2不同條件下的塵埃軌跡.......................30
3.2.1 塵埃大小...............................30
3.2.2 帶電量.................................32
3.2.3 正負電.................................34
3.2.4 垂直速度...............................36
3.2.5 離土星的距離............................39
四、討論......................................42
4.1 塵埃的墜落位置統計與分析...................44
4.2 重新撞擊回環面的塵埃.......................47
4.3 飛離土星與土星環系統的塵埃.................50
4.4 與觀測數據的比較...........................51
五、總結......................................54
六、參考資料..................................55
參考文獻 1. Bouhram M., R. E. Johnson, J.-J. Berthelier et al., A Test-particle Model of the Atmosphere/ionosphere System of Saturn’s Main Rings, Geophysical Research Letters, Vol. 33, L05106, 2006.
2. Connerney J. E. P., N.E. Ness, M. H. Acuna, Zonal Harmonic Model of Saturn′s Magnetic Field from Voyager 1 and 2 Observations, Nature, Vol. 298 1, July 1982.
3. Cuzzu J. N., J. A. Burns, S. Charnoz et al., An Evolving View of Saturn′s Dynamic Rings, Science, Vol 327, March 2010.
4. Hancen C. J., L. Esposito, A. I. Stewart et al., Enceladus’s Water Vapor Plume, Science, Vol 311, March 2006.
5. Hsu H. W., J. Schmidt, S. Kempf et al., In Situ Collection of Dust Grains Falling from Saturn’s Rings into Its Atmosphere, Science, 362, October 2018.
6. Hurford1 T. A., P. Helfenstein, G. V. Hoppa, R. Greenberg & B. G. Bills, Eruptions Arising from Tidally Controlled Periodic Openings of Rifts on Enceladus, Nature, Vol 447, May 2007.
7. Ip W. H., C. M. Liu, K. C. Pan, Transport and Electrodynamical Coupling of Nano-grains Ejected from the Saturnian Rings and Their Possible Ionospheric Signatures, Icarus, 276, 163-169, 2016.
8. Liu C. M., W. H. Ip, A New Pathway of Saturnian Ring–Ionosphere Coupling via Charged Nanograins, The Astrophysical Journal, 789:34, May 2014.
9. Miller K. E., J.H. Waite Jr., R.S. Perryman et al., Cassini INMS Constraints on the Composition and Latitudinal Fractionation of Saturn Ring Rain Material, Icarus, 339, 2020.
10. Mitchell D. G., M. E. Perry, D. C. Hamilton et al., Dust grains fall from Saturn’s D-ring into its equatorial upper atmosphere, Science, 362,October 2018.
11. Moore L., M. Galand, I. Mueller-Wodarg, M. Mendillo, Response of Saturn’s ionosphere to solar radiation: Testing parameterizations for thermal electron heating and secondary ionization processes, Planetary and Space Science, 57, 1699-1705, 2009.
12. Morfill G. E., H. Fechtig, E. Gron, C. K. Goertz, Some Consequences of Meteoroid Impacts on Saturn′s Rings, Icarus, 55, 439-447, 1983.
13. Northrop T. G., Stability of Negatively Charged Dust Grains in Saturn′s Ring Plane, Journal of Geophysical Research, Vol. 87, 6045-6051, August 1982.
14. Northrop T. G., The Inner Edge of Saturn′s B Ring, Journal of Geophysical Research, Vol. 88, 6102-6108, August 1983.
15. Perry M. E., J. H. Waite Jr., D. G. Mitchell et al., Material Flux From the Rings of Saturn Into Its Atmosphere, Geophysical Research Letters, 48, 10093-10100, 2018.
16. Sachse M., J. Schmidt, S.Kempt et al., Correlation between Speed and Size for Ejecta from Hypervelocity Impacts, Journal of Geophysical Research: Planets, 120, 1847-1858, 2015.
17. Seiß M., F. Spahn, Jürgen Schmidt, Moonlet Induced Wakes in Planetary Rings: Analytical Model Including Eccentric Orbits of Moon and Ring Particles, Icarus, 210, 298-317, 2010.
18. Tiscareno M. S., M. M. Hedman, J. A. Burns, J. Castillo-Rogez, Compositions and Origins of Outer Planet Systems: Insights From the Roche Critical Density, The Astrophysical Journal Letters, 765:L28, March 2013.
19. Tseng W. L., W. H. Ip, R. E. Johnson, T. A. Cassidy, M. K. Elrod, The Structure and Time Variability of the Ring Atmosphere and Ionosphere, Icarus, 206, 382-389, 2010.
20. Waite Jr. J. H., R. S. Perryman, M. E. Perry et al., Chemical Interactions between Saturn’s Atmosphere and Its Rings, Science, 362, 51, October 2018.
21. Zhang Z., A. G. Hayes, M. A. Janssen et al., Cassini Microwave Observations Provide Clues to the Origin of Saturn’s C ring, Icarus, 281, 297-321, 2017.
指導教授 葉永烜(Wing Huen Ip) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明