博碩士論文 108626003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.9.51
姓名 林志宗(Chih-Tsung Lin)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 微型資料浮標觀測波浪及MSS的比對分析與演算流程的改善
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ 微波雷達與CCD影像分析於潮間帶地形測量之應用★ The directional spreading of surface wave in the shallow water zone
★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan★ 平緩海灘表層含水量變化特性研究
★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 應用微波雷達監測海流之演算法流程改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文利用國立中央大學團隊以及「流浪者科技有限公司」共同開發的全固態的微型資料浮標,採用微電機系統作為慣性感測的主要測量系統,其主要測量項目包含波浪以及風速風向的相關海表參數,是全球首個利用浮標計算海面平均坡度(Mean Square Slope,MSS)並反演風速的研究方法,對目前海上的實際風速測量有很大的貢獻。
受海況變化及極端氣候的影響,易導致儀器損率,為增加儀器生存率,資料浮標目前以微型化為最大趨勢,並撤銷測量風速使用的外露式風速計。本研究所使用之微型資料浮標可用來觀測風速風向與波浪,其觀測原理以及演算法可分為:(A) 慣性感測系統測量傾度數值,並以傾度譜為依據計算MSS (Mean Square Slope) 做為風速參數,再進行風速風向分析。(B) 慣性感測系統測量垂向加速度數值,計算加速度頻譜,經傳遞函數轉換得水位譜後進行波浪分析。
上述兩項觀測項目皆透過國立成功大學的大型斷面水槽進行分析,分為以時序列及頻譜分析的實驗來驗證可行性,實驗方法採用一系列的造波實驗檢測以及嚴格的資料品管分析後,分別對於水面傾斜度以及波浪參數進行修正,才運用於實地的測量。
水槽實驗中微型資料浮標與波高計測得之傾度與水位相互比較後發現,在傾度方面以時序的平均相對誤差來看,當水面傾斜角度小於15°時,平均相對誤差約為5.6%,水面傾斜角度超過15°之後,平均相對誤差迅速增加到約9.4%,另外由頻率域上可觀測兩儀器間的傳遞係數,當兩者測量比值為一時可作為補償係數。水位方面則採用垂向加速度譜與水位譜同時比較兩儀器之間的傳遞係數,同樣當兩者儀器頻譜測量比值為一時,可將其視為補償的係數,藉由定量分析各波浪參數經過傳遞函數之校正於造波水槽的波浪比對結果顯示:微型資料浮標波高與週期之均方根誤差分別為0.038m與0.363s。
實地測量主要收集海面平均坡度(Mean Square Slope,MSS) 、示性波高、平均週期等,利用MSS作為風速計算的依據,同時採用本身已經過校驗的儀器做相互映證,獲得浮標實際測量的可行性,本研究於冬季季風近岸海域其他原理之波浪儀比對結果顯示趨勢符合,波浪與週期之均方根誤差分別小於0.613m與1.15s。MSS演算法經資料品管及波譜在高頻斜率的校正,觀測之MSS量值及其與風速之相關性與文獻一致,表示微型資料浮標於MSS的觀測可應用於海面風速之觀測且利用波齡參數可進一步降低風速估計之誤差,與中央氣象局之風速測站測量測出的結果,約有2.39m/s 的均方根誤差。
目前微型資料浮標應用於現場實驗時發現,浮標易受繫纜的繩張力限制,當發生異常波浪或碎波時,會因為浮標整體質量較小而產生大幅度的離水跳動,進而造成觀測結果偏差,為此未來將持續改善錨定式的繫纜需求,並佈放漂流式的浮標來降低整體誤差來源。
關鍵字: 微型資料浮標、 海表粗糙度、海面平均坡度
摘要(英) In this paper, the team of National Central University and "DRIFTER TECHNOLOGY CO., LTD." jointly developed a fully solid state micro data buoys, called "Miniature Wave Buoys (MWBs)", using MEMS (Micro Electro Mechanical Systems) as the main measurement system of inertial sensing, and the main measurement items include wind speed and direction and wave related sea surface parameters. It is the first research method in the world that uses buoys to calculate Mean Square Slope (MSS) and invert the wind speed.
The above two observation projects were analyzed in a large cross-sectional flume at National Cheng Kung University, divided into time series and spectrum analysis experiments to verify the feasibility. The experimental method used a series of wave generation experiments and rigorous data quality control analysis to correct the water surface inclination and wave parameters before applying them to field measurements. In order to increase the survival rate of the instrument, the MWBs are now miniaturized and the exposed anemometer used for wind speed and direction measurement has been removed. The MWBs used in this study can be used to observe wind speed, wind direction and waves. The observation principle and algorithm can be divided into: (A) The inertial sensing system measures the inclination value and calculates the MSS (Mean Square Slope) as the wind speed parameter based on the inclination spectrum, and then performs wind speed and wind direction analysis. (B) The inertial sensing system measures the vertical acceleration value, calculates the acceleration spectrum, and converts the water level spectrum by the transfer function to perform the wave analysis.
The above two observation projects were analyzed in a large cross-sectional flume at National Cheng Kung University (NCKU), divided into time series and spectrum analysis experiments to verify the feasibility. The experimental method used a series of wave generation experiments and rigorous data quality control analysis to correct the water surface inclination and wave parameters before applying them to field measurements.
In the water tank experiment, it was found that the average relative error of the time series was about 5.6% when the inclination angle of the water surface was less than 15°, and the average relative error increased rapidly to about 9.4% after the inclination angle of the water surface exceeded 15°. In addition, the transmission coefficient between the two instruments can be observed in the frequency domain, and when the ratio of the two measurements is one, it can be used as a compensation coefficient. The results of the wave comparison between the microdata buoy wave height and period were 0.038m and 0.363s, respectively, by quantitative analysis of the wave parameters corrected by the transfer function.
The field measurement mainly collects Mean Square Slope (MSS), indicative wave height, mean period, etc., and uses MSS as the basis for wind speed calculation, and at the same time uses its own calibrated instrument for cross-checking to obtain the feasibility of actual buoy measurement. The MSS algorithm was corrected by the data quality control and the high-frequency slope of the wave spectrum, and the observed MSS values and their correlation with the wind speed were consistent with the literature, indicating that the MSS observation of the microdata buoy can be applied to the observation of the wind speed at the sea surface and the error of wind speed estimation can be further reduced by using the wave age parameter. The results of the wind speed measurement from the central meteorological office have a root mean square error of about 2.39m/s.
At present, when the micro data buoy is applied to field experiments, it is found that the buoy is easily limited by the rope tension of the mooring line, and when abnormal waves or broken waves occur, the overall mass of the buoy is small and produces a large jump out of the water, which causes deviations in the observation results.
關鍵字(中) ★ 微型資料浮標
★ 海面平均坡度
★ 海表粗糙度
關鍵字(英) ★ Miniature Wave Buoy
★ Mean Square Slope
★ Sea Surface Roughness
論文目次 中文摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XX
符號說明 XXI
1 第一章 緒論 1
1.1 海氣象浮標的發展與背景 1
1.2 微型資料浮標的特點 8
1.3 研究目的 9
1.4 本文組織 9
2 第二章 微型資料浮標架構 10
2.1 浮標構型與系統架構 10
2.1.1 微電腦處理平台系統 12
2.1.2 衛星定位系統 13
2.1.3 慣性感測器系統 13
2.1.4 通訊與線上監控系統 16
2.1.5 供電系統 17
2.1.6 溫度感測器 18
2.2 參數演算方法 22
2.2.1 波浪與波浪頻譜特性 22
2.2.2 波浪參數之計算原理及方法 23
2.2.3 海面平均坡度 25
2.2.4 海面平均坡度之計算方法 31
2.3 微型資料浮標品管流程 33
2.3.1 波浪參數品管流程 33
2.3.2 MSS品管流程 34
3 第三章 實驗室水槽校驗 37
3.1 實驗目的 37
3.2 實驗方法與流程 37
3.3 造波條件 40
3.4 設備及儀器 42
3.5 實驗結果 44
3.5.1 波浪參數 44
3.5.2 平均坡度 52
4 第四章 微型資料浮標用於現場實測 58
4.1 桃園永安觀測站實驗 58
4.1.1 實驗佈置 58
4.1.2 實驗設備與儀器 59
4.1.3 拖曳係數、粗糙長度與風速之計算方式 61
4.1.4 實驗結果 65
4.2 新北白沙灣實驗 77
4.2.1 實驗佈置 77
4.2.2 實驗設備與儀器 79
4.2.3 實驗結果 81
5 第五章 結論與建議 118
5.1 結論 118
5.2 建議 120
6 參考文獻 121
參考文獻 1. Barthelmie, R. J., (1996), “Observations and simulations of diurnal cycles of near-surface wind speeds over land and sea”, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. D16, PAGES 21,327-21,337, SEPTEMBER 27, 1996,Paper number 96JD01520.0148-0227/96/96JD-01520509.00.
2. Charnock, H. (1955), “Wind stress on a water surface”, National Institute of Oceanography, Wormley, Surrey.
3. Chu, Xiaoqing, (2012), Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 10, OCTOBER 2012
4. Cox, C.S. and W. Munk, (1954), “Statistics of the Sea Surface Derived from Sun Glitter”, J. Mar. Res. 13, 198- 227, 1954.
5. Cox, C.S. and W. Munk, (1956), “Slopes of the Sea Surface Deduced from Photographs of Sun Glitter”, Bull. Scripps Instit. Oceanogr., Univ. of Calif. 6, 401-488, 1956.
6. Cox, C. S., (1958), “ Measurements of slopes of high-frequency waves”, Journal of Marine Research 16, Yale University, pp.199-225.
7. David D. McGehee, P.E., (2003), Episodic wave data capture with miniaturized instrumentation”, Emerald Ocean Engineering 107, Ariola Drive Pensacola Beach, FL 32561, USA.
8. Dean, Vickers et al., (2013), “Estimates of the 10-m Neutral Sea Surface Drag Coefficient from Aircraft Eddy-Covariance Measurements”, Oregon State University, College of Earth, Ocean and Atmospheric Sciences, CEOAS Admin Bldg. 104, Corvallis, OR 97331. DOI: 10.1175/JPO-D-12-0101.1
9. Gleason, S., (2018), “Study of Surface Wind and Mean Square Slope Correlation in Hurricane Ike With Multiple Sensors”, IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 6, JUNE 2018.
10. Hsu, S. A. (1988), “Coastal Meteorology”, Coastal Studies Institute School of Geoscience Louisiana State University Baton Gouge, Louisiana. ACADEMIC PRESS, INC., ISBN 0-12-35-7955-4
11. Chien, Hwa, Zhong, Yao-Zhao (2018), “Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation”, Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan, Continental Shelf Research 162 (2018) 27–38
12. Hagninou, E. V. Donnou, Aristide B. Akpo, et al. (2019), “Vertical Profile of Wind Diurnal Cycle in the Surface Boundary Layer over the Coast of Cotonou, Benin, under a Convective Atmosphere”, Laboratoire de la Physique du Rayonnement, Facult´e des Sciences et Techniques, Universit´e d’Abomey-Calavi, 01 B.P. 526, Cotonou, Benin, Volume 2019, Article ID 7530828, 18 pages
13. Hwang, Paul A. and Wang, David W., et al., (2002), “Anatomy of the Ocean Surface Roughness”, Naval Research Laboratory Stennis Space Center, MS 39529-5004, NRL/FR/7330--02-10,036
14. Hwang, Paul A., (2005), “Wave number spectrum and mean square slope of intermediate-scale ocean surface waves”, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, C10029, DOI: 10.1029/2005JC003002, 2005.
15. Hwang, Paul A. (2018), “Low-Frequency Mean Square Slopes and Dominant Wave Spectral Properties: Toward Tropical Cyclone Remote Sensing”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 12, DECEMBER 2018
16. Hwang, Paul A. (2019), “Variable Spectral Slope and Nonequilibrium Surface Wave Spectrum”, Remote Sensing Division, Naval Research Laboratory, Washington, DC, 20375, USA
17. Hwang, Paul A., (2021), “Microwave Specular Measurements and Ocean Surface Wave Properties”. Sensors 2021, 21, 1486.
18. HE, Y.C., (2016), “Standardization of Offshore Surface Wind Speeds”, Dept. of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, DOI: 10.1175/JAMC-D-15-0299.1
19. Hasse, L., (1986), “On Charnock′s Relation for the Roughness at Sea”, Institut für Meereskunde, Kiel, Germany, E. C. Monahan and G. Mac Niocaill (eds.), Oceanic Whitecaps, 49-56. © 1986 by D. Reidel Publishing Company.
20. Holtslag, A. A. M., (1984), “Estimates of Diabatic Wind Speed Profiles from Near-Surface Weather Observations”, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands. 29, pages225–250
21. Holtslag, M.C., Bierbooms, W.A.A.M., G.J.W. van Bussel, (2017), “Extending the diabatic surface layer wind shear profile for offshore wind energy”, Renewable Energy 101 (2017) 96e110, DOI: 10.1016/j.renene.2016.08.031.
22. John, A., (2008), “Charnock dynamics: a model for the velocity structure in the wave boundary layer of the air–sea interface”, Ocean Dynamics (2008) 58:31–42, DOI 10.1007/s10236-007-0130-5
23. Lange, B., et al., (2002), “Modelling the Vertical Wind Speed and Turbulence Intensity Profiles at Prospective Offshore Wind Farm Sites”, Dept. of Energy and Semiconductor Research, Faculty of Physics, University of Oldenburg. Corpus ID: 15793681
24. Li, S., and Zhao, D., et al. (2013), “Dependence of mean square slope on wave state and its application in altimeter wind speed retrieval”, Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266003, China International Journal of Remote Sensing, 34:1, 264-275, DOI: 10.1080/01431161.2012.713144
25. Liu, Y., (2000), “The Mean-Square Slope of Ocean Surface Waves and Its Effects on Radar Backscatter”, DOI: https://doi.org/10.1175/1520-0426(2000)017<1092:TMSSOO>2.0.CO;2
26. Smit P.B., Clark D., Dunning C., (2019), “Performance statistics of a real-time Pacific Ocean weather sensor network”, Sofar Ocean Technologies, San Francisco, California, USA, DOI 10.1175/JTECH-D-20-0187.1.
27. Phillips, O. M. (1969), “The Dynamics of The Upper Ocean”, Decker Professor of Science and Engineering, The Johns Hopkins University, Second Edition
28. Soreide, Nancy N. (2001), “Overview of Ocean Based Buoys and Drifters: Present Applications and Future Needs”, MTS 0-933957-28-9, 10.1109/OCEANS.2001.968388
29. Tian, L., Song Y., Zhao N. (2020), “Numerical investigations into the idealized diurnal cycle of atmospheric boundary layer and its impact on wind turbine′s power performance”, Renewable Energy 145 (2020) 419e427.
30. Tsai, Yuan-Shiang, (2019), “Lidar Observations of the Typhoon Boundary LayerWithin the Outer Rainbands”, National Centre for Research on Earthquake Engineering, National Applied Research Laboratories,200, Sec. 3, Sinhai Rd., Taipei, Taiwan, Boundary-Layer Meteorology (2019) 171:237–255
31. Tsai, Yuan-Shiang, (2014), “Two field studies of the wind profile measurement using LIDAR”, Taiwan Ocean Research Institute National Applied Research Laboratories, 978-1-4799-3646-5/14/$31.00 ©2014 IEEE
32. Tsai, Yuan-Shiang, (2019), “Wind Speed Profiles of Typhoon Matmo Observed Using Doppler Lidar”, Journal of Coastal and Ocean Engineerinf, Vol. 17, No. 1.
33. Bondur, Valery G. and Murynin, Alexander B. (2018), “Measurement of Sea Wave Spatial Spectra from High- Resolution Optical Aerospace Imagery”, DOI:10.5772/INTECHOPEN.71834
34. Wu, J. (1990), “Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition”, Air-Sea Interaction Laboratory, College of Marine Studies, University of Delaware, Lewes, Paper number 89RS03580.0048-6604/90/89RS-03580
35. Wang, J., Wang, Z., et al., (2016), “Current situation and trend of marine data buoy and monitoring network technology of China”, Acta Oceanol. Sin., 2016, Vol. 35, No. 2, P. 1–10, DOI: 10.1007/s13131-016-0815-z
36. Wu, J., (1986), “Stability parameters and wind-stress coefficients under various atmospheric conditions”, J. Atmos. Oceanic Tech., 3, 333-339, 1986.
37. Yan, Qiu-shuang, et al. (2020), “Understanding Ku-Band Ocean Radar Backscatter at Low Incidence Angles under Weak to Severe Wind Conditions by Comparison of Measurements and Models”, College of Oceanography and Space Informatics, China University of Petroleum, Qingdao 266580, China.
38. Zhang, H., et al. (2018), “Observation of sea surface roughness at a pixel scale using multi-angle sunglitter images acquired by the ASTER sensor”, Remote Sensing of Environment 208 (2018) 97–108
39. Zhong, Y., Cheng, H.-Y. & Chien, H.(2019), “Miniature Wave Buoy – Laboratory and Field Tests for Development of a Robust Low-Cost Measuring Technique”, Coastal Structures 2019 - Nils Goseberg, Torsten Schlurmann (eds) - © 2019 Bundesanstalt für Wasserbau ISBN 978-3-939230-64-9 (Online) - DOI: 10.18451/978-3-939230-64-9_046
40. 俞聿修,(1999), 「隨機波浪及工程應用」, ISBN 957-8845-60-X
41. 苑瀞丰,(2011),「近岸海洋波浪對海面粗糙度之影響」,國立中央大學水文與海洋科學研究所碩士論文。
42. 錢 樺,鄭皓元,苑瀞丰,(2011),「淺化波浪對於近岸海面粗糙度之影響」,第 33 屆海洋工程研討會論文集。
43. 錢 樺,陳沛宏,林演斌,(2003),「國輪自動化船舶海氣象系統之研發」,成功大學近海水文中心。
44. 邱銘達,(2001),「資料浮標量測波高波向準確度提升研究」,國立成功大學水利及海洋工程學系碩士論文。
45. Nurul Tazaroh,(2019),「海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係」,國立中央大學水文與海洋科學研究所碩士論文。
46. 張珮錡,(2014),「浮動式與陸域式雷射光達測風系統於港區內之比對分析研究」,第36 屆海洋工程研討會論文集
指導教授 錢樺(Hwa Chien) 審核日期 2021-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明