博碩士論文 108223022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.144.243.83
姓名 呂秉峻(Bing-Jyun Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用生質碳源製備成多孔洞結構之碳材 於高效能鋰(鈉)離子電池負極材料之應用 及複合式有機無機固(膠)態高分子電解質之結構鑑定與電化學性質研究
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本論文分為兩部分,第一部分主要是利用生質碳源以模板法製備多孔洞碳材PCC並應用於電池之負極材料。生質碳源因來自生物質藉由適當的製備方式,可保留其天然之微量元素達到自摻雜的效果,本研究之PCC碳材經一系列材料鑑定發現還具有氮、硫、矽和磷元素,對於材料在電性上的表現有一定程度的幫助,且有著高比表面積和多樣孔洞的特殊結構也使得材料有著更大的電容量。此材料在鋰離子電池系統以電流密度100 mA g-1進行充放電循環測試,經過393圈後能得到699.4 mA h g-1優異的電容量表現,另外在鈉離子系統中以電流密度1000 mA g-1進行充放電循環測試,在493圈後能穩定得到150.9 mA h g-1的電容量顯示此材料具有良好的循環穩定性。
第二部分為複合式有機無機高分子電解質之合成,根據使用需求製備成固態和膠態兩種形式,並應用於鋰離子電池之電解質。本實驗利用兩種不同特性之高分子材料M-2070和ED2003分別與4,4’-Methylene diphenyl diisocyanate(MDI)交聯形成線性前驅物,接著依據不同重量百分比並改變其氧鋰比合成出混摻型有機無機固態高分子電解質其在30℃下離子導電度達到1.19×〖10〗^(-4) S cm-1,在膠態系統中更是高達2.19×〖10〗^(-3) S cm-1,且在硬幣型電池的充放電循環測試中經過18圈有著高達154.7 mA h g-1的電容量表現優於市售隔離膜。
摘要(英) Recently, biomass derived carbons have gained enormous attention mainly due to their abundance, environmental friendliness and the factors associated with the utilization in energy conversion and storage systems. Heteroatom doping is an effective strategy to optimize the electrochemical performance of biomass-derived carbon electrode materials. Furthermore, fast redox reactions originating from surface functional groups can contribute to extra pseudo-capacitance. Biomass-based carbons with heteroatom doping can be realized by choosing heteroatom-enriched precursors or chemical dopants and processed by appropriate synthesis method. In this study, ordered mesoporous silica (KIT-6) is used as template with pine cone powder to prepare pine cone derived carbon (PCC). The PCC delivers a high reversible capacity of 699.4 mA h g-1 after 393 cycles at a current density of 100 mA g-1 when use as anode for lithium-ion battery. When investigated in sodium-ion battery, the PCC anode has exhibited a high reversible discharge capacity of 151 mA h g-1 after 493 cycles even at current density of 1000 mA g-1. Besides, the mixed storage mechanism is further studied by kinetic calculation.
In the second part, the synthesis of a new hybrid organic-inorganic polymer electrolyte based on 4,4’-methylene diphenyl diisocyanate, ED2003, M-2070 and organosilane ICPTES is discussed. The solid polymer electrolyte (SPE) has delivered the maximum ionic conductivity value of 1.19 × 10-4 S cm-1 at 30 ℃. A maximum ionic conductivity value of 2.19 × 10-3 S cm-1 is achieved for the plasticized polymer electrolytes (PPE) immersed in liquid electrolyte. The lithium battery prepared with the plasticized polymer electrolyte and LiFePO4 cathode has exhibited a high reversible discharge capacity of 154.7 mA h g-1 after 18 cycles at a current rate of 0.3 C. The new hybrid polymer electrolyte holds promise for application in next generation lithium-ion batteries.
關鍵字(中) ★ 鋰離子電池
★ 鈉離子電池
★ 生質碳材
★ 高分子電解質
★ 固態高分子電解質
★ 膠態高分子電解質
關鍵字(英)
論文目次 第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池 2
1-3 金屬離子電池 6
1-4 生物質碳材 8
1-5 高分子電解質 9
1-6 研究目的 10
第二章 文獻回顧 11
2-1 負極材料 11
2-1-1 碳材 11
2-1-2 非碳材 13
2-2 生質碳材 14
2-3-1 以生物質材料作為碳源合成碳材 15
2-3-2 以不同方式增加生質碳材之電化學性質 17
2-3 高分子電解質 21
2-4-1 固態高分子電解質 23
2-4-2 膠態高分子電解質 30
2-4-3 鋰離子鹽類 36
2-4-4 有機矽高分子 41
第三章 實驗藥品與儀器原理 42
3-1 實驗藥品 42
3-2 實驗鑑定儀器 45
3-3 材料鑑定儀器之原理 46
3-3-1 X射線粉末繞射(XRD) 46
3-3-2 氮氣等溫吸脫附曲線、表面積與孔洞性質鑑定(BET) 47
3-3-3 熱重分析儀(TGA) 51
3-3-4 示差掃描量熱儀(DSC) 52
3-3-5 傅立葉紅外線吸收光譜儀(FTIR) 53
第四章 實驗方法 54
4-1 負極材料製備 54
4-1-1 六角柱狀p6mm中孔洞矽材KIT-6合成 54
4-1-2 以生質碳源利用KIT-6為模板合成碳材(PCC) 55
4-1-3 提升氮摻雜量之生質碳材(N-PCC)合成 56
4-2 高分子電解質製備 57
4-2-1 固態高分子電解質製備 57
4-2-2 膠態高分子電解質製備 60
4-3 電化學測試之材料製備 61
4-3-1 負極極片製作 61
4-3-2 正極極片製作 62
4-3-3 硬幣型2032型電池組裝 62
4-4 電池性能測試方法 64
4-4-1 定(變)電流充放電循環壽命測試 64
4-4-2 循環伏安法(CV) 64
第五章 結果與討論-利用松果製備生質碳材應用於負極材料 65
5-1 材料鑑定 65
5-1-1 小角度X光繞射分析(SAXRD) 65
5-1-2 大角度粉末X光繞射分析(PXRD) 67
5-1-3 氮氣吸脫附結果分析(BET) 68
5-1-4 拉曼光譜分析(Raman) 71
5-1-5 熱重分析(TGA) 72
5-1-6 元素分析(EA) 73
5-1-7 X光電子能譜(XPS)分析 74
5-1-8 掃描式電子顯微鏡(SEM)結果分析 76
5-1-9 穿透式電子顯微鏡(TEM)結果分析 79
5-2 生質碳材(PCC)之電化學測試 84
5-2-1 循環伏安法(CV)分析 84
5-2-2 電化學交流阻抗頻譜分析(EIS) 86
5-2-3 電性暨電池性能分析 88
5-3 生質碳材(PCC)之動力學探討 105
5-3-1 離子擴散係數計算 105
5-3-2 贋電容貢獻度計算 107
5-4 相關文獻比較 110
第六章 結果與討論-固(膠)態高分子電解質MMEDMI-X-Y 111
6-1 高分子電解質MMEDMI-X-Y之材料鑑定 111
6-1-1 熱重分析(TGA) 112
6-1-2 示差掃描量熱分析(DSC) 114
6-1-3 紅外線吸收光譜(IR)分析 117
6-1-4 SEM表面分析 121
6-1-5 固態核磁共振光譜(SSNMR)分析 124
6-2 高分子電解質MMEDMI-X-Y之電化學測試 127
6-2-1 固態高分子電解質之離子導電度測試 128
6-2-2 固態高分子電解質之線性掃描伏安法(LSV) 132
6-2-3 膠態高分子電解質之膨潤度測試 134
6-2-4 膠態高分子電解質之離子導電度測試 138
6-2-5 電池性能測試 140
第七章 結論 143
參考文獻 145
參考文獻 1. Sepasi, S., Adaptive State of Charge Estimation for Battery Packs. 2014.
2. Han, L.; Lehmann, M. L.; Zhu, J.; Liu, T.; Zhou, Z.; Tang, X.; Heish, C.-T.; Sokolov, A. P.; Cao, P.; Chen, X. C.; Saito, T., Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. Frontiers in Energy Research 2020, 8.
3. Zhou, W.; Zhang, M.; Kong, X.; Huang, W.; Zhang, Q., Recent Advance in Ionic‐Liquid‐Based Electrolytes for Rechargeable Metal‐Ion Batteries. Advanced Science 2021.
4. El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M., Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817.
5. Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X., Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 2017, 5 (6), 2411-2428.
6. Zuo, C.; Yang, M.; Wang, Z.; Jiang, K.; Li, S.; Luo, W.; He, D.; Liu, C.; Xie, X.; Xue, Z., Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries. Journal of Materials Chemistry A 2019, 7 (32), 18871-18879.
7. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M., Lithium storage in ordered mesoporous carbon (CMK‐3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15 (24), 2107-2111.
8. Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L., Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J. Power Sources 2017, 362, 20-26.
9. Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W., One dimensional and coaxial polyaniline@ tin dioxide@ multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chem. Eng. J. 2018, 334, 162-171.
10. Qiu, H.; Wang, Y.; Liu, Y.; Li, D.; Zhu, X.; Ji, Q.; Quan, F.; Xia, Y., Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. J. Porous Mater. 2017, 24 (2), 551-557.
11. Chen, L.; Wang, Y. Z., A review on flame retardant technology in China. Part I: development of flame retardants. Polym. Adv. Technol. 2010, 21 (1), 1-26.
12. Reina, G.; González-Domínguez, J. M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M., Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 2017, 46 (15), 4400-4416.
13. De las Casas, C.; Li, W., A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74-85.
14. Lee, C.-S.; Hyun, Y., Synthesis and Characteristics of Carbon Nanofibers/Silicon Composites and Application to Anode Materials of Li Secondary Batteries. In Nanofiber Research-Reaching New Heights, IntechOpen: 2016.
15. Zhou, X.; Wan, L.-J.; Guo, Y.-G., Facile synthesis of MoS2@ CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 2012, 4 (19), 5868-5871.
16. Lyu, L.; Seong, K.-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; Piao, Y., Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers 2019, 3 (12), 2543-2570.
17. Zhu, Z.; Xu, Z., The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews 2020, 134.
18. Gao, Y.-P.; Zhai, Z.-B.; Huang, K.-J.; Zhang, Y.-Y., Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New Journal of Chemistry 2017, 41 (20), 11456-11470.
19. Wang, X.; Shi, G., An introduction to the chemistry of graphene. Phys Chem Chem Phys 2015, 17 (43), 28484-504.
20. Zhao, Y.; Bai, Y.; Bai, Y.; An, M.; Chen, G.; Li, W.; Li, C.; Zhou, Y., A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources 2018, 407, 23-30.
21. Liu, M.; Jin, B.; Zhang, Q.; Zhan, X.; Chen, F., High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. Journal of Alloys and Compounds 2018, 742, 619-628.
22. Saikia, D.; Chang, Y.-J.; Fang, J.; Kao, H.-M., Highly conducting blend hybrid electrolytes based on amine ended block copolymers and organosilane with in-situ formed silica particles for lithium-ion batteries. Journal of Power Sources 2018, 390, 1-12.
23. Fenton, D., Complexes of alkali metal ions with poly (ethylene oxide). polymer 1973, 14, 589.
24. Wright, P. V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal 1975, 7 (5), 319-327.
25. Armand, M.; Chabagno, J.; Duclot, M., Second international meeting on solid electrolytes. St Andrews, Scotland 1978, 20-22.
26. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.; Chabagno, J.; Rigaud, P., Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics 1983, 11 (1), 91-95.
27. Walker, C. W.; Salomon, M., Improvement of ionic conductivity in plasticized PEO‐based solid polymer electrolytes. J. Electrochem. Soc. 1993, 140 (12), 3409-3412.
28. Wang, H.-L.; Kao, H.-M.; Digar, M.; Wen, T.-C., FTIR and solid state 13C NMR studies on the interaction of lithium cations with polyether poly (urethane urea). Macromolecules 2001, 34 (3), 529-537.
29. Young, N. P.; Devaux, D.; Khurana, R.; Coates, G. W.; Balsara, N. P., Investigating polypropylene-poly (ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries. Solid State Ionics 2014, 263, 87-94.
30. Çelik, S. Ü.; Bozkurt, A., Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries. Solid State Ionics 2010, 181 (21-22), 987-993.
31. Zhang, Z.; Sherlock, D.; West, R.; West, R.; Amine, K.; Lyons, L. J., Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity. Macromolecules 2003, 36 (24), 9176-9180.
32. Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H., Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte. Adv. Mater. 2017, 29 (13), 1604460.
33. Weston, J.; Steele, B., Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7 (1), 75-79.
34. Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J., Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide into polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)-Li (CF3SO2)2N/Li. J. Power Sources 2011, 196 (18), 7681-7686.
35. Marcinek, M.; Bac, A.; Lipka, P.; Zalewska, A.; Żukowska, G.; Borkowska, R.; Wieczorek, W., Effect of filler surface group on ionic interactions in PEG− LiClO4− Al2O3 composite polyether electrolytes. The Journal of Physical Chemistry B 2000, 104 (47), 11088-11093.
36. Vignarooban, K.; Dissanayake, M.; Albinsson, I.; Mellander, B.-E., Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25-28.
37. Do, N. S. T.; Schaetzl, D. M.; Dey, B.; Seabaugh, A. C.; Fullerton-Shirey, S. K., Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: Nanorods versus nanospheres. The Journal of Physical Chemistry C 2012, 116 (40), 21216-21223.
38. Xi, J.; Miao, S.; Tang, X., Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules 2004, 37 (23), 8592-8598.
39. Xi, J.; Qiu, X.; Ma, X.; Cui, M.; Yang, J.; Tang, X.; Zhu, W.; Chen, L., Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 2005, 176 (13-14), 1249-1260.
40. Abraham, K.; Alamgir, M., Room temperature polymer electrolytes and batteries based on them. Solid State Ionics 1994, 70, 20-26.
41. Feuillade, G.; Perche, P., Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5 (1), 63-69.
42. Song, J.; Wang, Y.; Wan, C. C., Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77 (2), 183-197.
43. Kelly, I.; Owen, J.; Steele, B., Poly (ethylene oxide) electrolytes for operation at near room temperature. J. Power Sources 1985, 14 (1-3), 13-21.
44. Chintapalli, S.; Frech, R., Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics 1996, 86, 341-346.
45. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I., Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. J. Appl. Polym. Sci. 1982, 27 (11), 4191-4198.
46. Quartarone, E.; Tomasi, C.; Mustarelli, P.; Appetecchi, G.; Croce, F., Long-term structural stability of PMMA-based gel polymer electrolytes. Electrochim. Acta 1998, 43 (10-11), 1435-1439.
47. Alamgir, M.; Abraham, K., Li ion conductive electrolytes based on poly (vinyl chloride). J. Electrochem. Soc. 1993, 140 (6), L96-L97.
48. Tsuchida, E.; Ohno, H.; Tsunemi, K., Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I. Electrochim. Acta 1983, 28 (5), 591-595.
49. Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I., Microporous PVdF gel for lithium-ion batteries. J. Power Sources 1999, 81, 804-807.
50. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104 (10), 4303-4418.
51. Pearson, R. G., Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85 (22), 3533-3539.
52. Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes. J. Electrochem. Soc. 1995, 142 (9), 2873-2882.
53. Newman, G.; Francis, R.; Gaines, L.; Rao, B., Hazard investigations of LiClO4/dioxolane electrolyte. J. Electrochem. Soc. 1980, 127 (9), 2025-2027.
54. Ue, M.; Mori, S., Mobility and ionic association of lithium salts in a propylene carbonate‐ethyl methyl carbonate mixed solvent. J. Electrochem. Soc. 1995, 142 (8), 2577-2581.
55. Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R., The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis (perfluoroethylsulfonylimide)[LiN (C2F5SO2)2]. J. Electrochem. Soc. 1999, 146 (2), 462-469.
56. Webber, A., Conductivity and Viscosity of Solutions of LiCF3SO3, Li (CF3SO2)2N, and Their Mixtures. J. Electrochem. Soc. 1991, 138 (9), 2586-2590.
57. Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W., Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 2000, 147 (12), 4399-4407.
58. Kawamura, T.; Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J.-I., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources 2002, 104 (2), 260-264.
59. Sloop, S.; Pugh, J.; Wang, S.; Kerr, J.; Kinoshita, K., Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochem. Solid-State Lett. 2001, 4 (4), A42-A44.
60. Blonsky, P. M.; Shriver, D.; Austin, P.; Allcock, H. R., Polyphosphazene solid electrolytes. J. Am. Chem. Soc. 1984, 106 (22), 6854-6855.
61. Groce, F.; Gerace, F.; Dautzemberg, G.; Passerini, S.; Appetecchi, G.; Scrosati, B., Synthesis and characterization of highly conducting gel electrolytes. Electrochim. Acta 1994, 39 (14), 2187-2194.
62. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73 (1), 373-380.
63. Kesavan, T.; Sasidharan, M., Palm Spathe Derived N-Doped Carbon Nanosheets as a High Performance Electrode for Li-Ion Batteries and Supercapacitors. ACS Sustainable Chemistry & Engineering 2019.
64. Li, R.; Huang, J.; Li, J.; Cao, L.; Zhong, X.; Yu, A.; Lu, G., Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes. Journal of Electroanalytical Chemistry 2020, 862.
65. Zhang, C.; Cai, X.; Chen, W.; Yang, S.; Xu, D.; Fang, Y.; Yu, X., 3D Porous Silicon/N-Doped Carbon Composite Derived from Bamboo Charcoal as High-Performance Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 9930-9939.
66. Qu, Y.; Guo, M.; Wang, X.; Yuan, C., Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. Journal of Alloys and Compounds 2019, 791, 874-882.
67. Han, Q.; Shi, M.; Han, Z.; Li, Y.; Zhang, W.; Zhang, X., Bio-mesopores structure functional composites by mushroom-derived carbon/NiO for lithium-ion batteries. Journal of Alloys and Compounds 2020, 848.
68. Kesavan, T.; Partheeban, T.; Vivekanantha, M.; Prabu, N.; Kundu, M.; Selvarajan, P.; Umapathy, S.; Vinu, A.; Sasidharan, M., Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery. ACS Appl Mater Interfaces 2020, 12 (21), 24007-24018.
69. Liu, Y.; Shi, M.; Han, M.; Yang, J.; Yu, J.; Narayanasamy, M.; Dai, K.; Angaiah, S.; Yan, C., Spontaneous exfoliation and tailoring derived oxygen-riched porous carbon nanosheets for superior Li+ storage performance. Chemical Engineering Journal 2020, 387.
70. Yuan, M.; Cao, B.; Meng, C.; Zuo, H.; Li, A.; Ma, Z.; Chen, X.; Song, H., Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries. Chemical Engineering Journal 2020, 400.
71. Hernandez-Rentero, C.; Marangon, V.; Olivares-Marin, M.; Gomez-Serrano, V.; Caballero, A.; Morales, J.; Hassoun, J., Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. J Colloid Interface Sci 2020, 573, 396-408.
72. Yu, H.-Y.; Liang, H.-J.; Gu, Z.-Y.; Meng, Y.-F.; Yang, M.; Yu, M.-X.; Zhao, C.-D.; Wu, X.-L., Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochimica Acta 2020, 361.
73. Murali, G.; Harish, S.; Ponnusamy, S.; Ragupathi, J.; Therese, H. A.; Navaneethan, M.; Muthamizhchelvan, C., Hierarchically porous structured carbon derived from peanut shell as an enhanced high rate anode for lithium ion batteries. Applied Surface Science 2019, 492, 464-472.
74. Zhang, L.; Zhao, W.; Jiang, F.; Tian, M.; Yang, Y.; Ge, P.; Sun, W.; Ji, X., Carbon nanosheets from biomass waste: insights into the role of a controlled pore structure for energy storage. Sustainable Energy & Fuels 2020, 4 (7), 3552-3565.
75. Tsai, S.-Y.; Muruganantham, R.; Tai, S.-H.; Chang, B. K.; Wu, S.-C.; Chueh, Y.-L.; Liu, W.-R., Coffee grounds-derived carbon as high performance anode materials for energy storage applications. Journal of the Taiwan Institute of Chemical Engineers 2019, 97, 178-188.
76. Wu, P.; Shao, G.; Guo, C.; Lu, Y.; Dong, X.; Zhong, Y.; Liu, A., Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping. Journal of Alloys and Compounds 2019, 802, 620-627.
77. Zhang, X.; Huang, Q.; Zhang, M.; Li, M.; Hu, J.; Yuan, G., Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable anodes for lithium-ion batteries. Journal of Alloys and Compounds 2020, 822.
78. Li, R.; Huang, J.; Ren, J.; Cao, L.; Li, J.; Li, W.; Lu, G.; Yu, A., A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries. Journal of Alloys and Compounds 2020, 818.
79. Nie, W.; Liu, X.; Xiao, Q.; Li, L.; Chen, G.; Li, D.; Zeng, M.; Zhong, S., Hierarchical Porous Carbon Anode Materials Derived from Rice Husks with High Capacity and Long Cycling Stability for Sodium‐Ion Batteries. ChemElectroChem 2020, 7 (3), 631-641.
80. Ma, B.; Huang, Y.; Nie, Z.; Qiu, X.; Su, D.; Wang, G.; Yuan, J.; Xie, X.; Wu, Z., Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances 2019, 9 (35), 20424-20431.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2021-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明